1.对数的定义 其中 与 查看更多

 

题目列表(包括答案和解析)

定义平面向量之间的一种运算“*”如下:对任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.给出以下四个命题:(1)若
a
b
共线,则
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)对任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:这里
a
b
a
b
的数量积)则其中所有真命题的序号是(  )
A、(1)(2)(3)
B、(2)(3)(4)
C、(1)(3)(4)
D、(1)(2)(4)

查看答案和解析>>

定义变换T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当θ=arctan
3
4
时,其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)当θ=arctan
3
4
时,求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
θ≠
2
,k∈Z)下的不动点的存在情况和个数.

查看答案和解析>>

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)是函数f(x)的一个“亲密函数”,现有如下的命题:
(1)对于给定的函数f(x),其“亲密函数”有可能不存在,也可能有无数个;
(2)g(x)=2x是f(x)=2x,的一个“亲密函数”;
(3)定义域与值域都是R的函数f(x),不存在“亲密函数”.
其中正确的命题是(  )

查看答案和解析>>

定义在R上的函数f(x)满足f(1+x)=f(1-x),又设g1(x)=f(x+3),g2(x)=f(3-x),给出下列四个命题:
①f(x)的图象关于直线x=1对称,g1(x)的图象与g2(x)的图象关于直线x=3对称;
②f(x)的图象关于直线x=1对称,g1(x)的图象与g2(x)的图象关于直线x=0对称;
③f(x)的周期为4,g1(x)与g2(x)的周期均为2;
④f(x)的图象关于直线x=2对称,g1(x)的图象与g2(x)的图象关于直线x=3对称.其中正确的命题有
(填入正确命题的序号).

查看答案和解析>>

定义:若函数f(x)的图象经过变换T后所得图象对应的函数与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出了四个函数与对应的变换:
(1)f(x)=(x-1)2,T1将函数f(x)的图象关于y轴对称;
(2)f(x)=2x-1-1,T2将函数f(x)的图象关于x轴对称;
(3)f(x)=
x
x+1
,T3将函数f(x)的图象关于点(-1,1)对称;
(4)f(x)=sin(x+
π
3
),T4将函数f(x)的图象关于点(-1,0)对称.
其中T是f(x)的同值变换的有
(1)(3)(4)
(1)(3)(4)
.(写出所有符合题意的序号)

查看答案和解析>>


同步练习册答案