综上所述.的面积的最小值为.24解 (1)由题意: 查看更多

 

题目列表(包括答案和解析)

(2013•徐州模拟)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若cos∠AMB=-
65
65
,求△ABM的面积.

查看答案和解析>>

抛物线y2=2px(p>0)上任一点Q到其内一点P(3,1)及焦点F的距离之和的最小值为4.
(1)求抛物线的方程;
(2)设动直线y=kx+b与抛物线交于A(x1,y1),B(x2,y2)两点,且|y1-y2|的值为定值a(a>0),过弦AB的中点M作平行于抛物线的轴的直线交抛物线于点D,求△ABD的面积.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-1,0)、F2(1,0),P为椭圆C上任意一点,且cos∠F1PF2的最小值为
1
3

(1)求椭圆C的方程;
(2)动圆x2+y2=t2
2
<t<
3
)与椭圆C相交于A、B、C、D四点,当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

抛物线y2=2px(p>0)上任一点Q到其内一点P(3,1)及焦点F的距离之和的最小值为4.
(1)求抛物线的方程;
(2)设动直线y=kx+b与抛物线交于A(x1,y1),B(x2,y2)两点,且|y1-y2|的值为定值a(a>0),过弦AB的中点M作平行于抛物线的轴的直线交抛物线于点D,求△ABD的面积.

查看答案和解析>>

抛物线y2=2px(p>0)上任一点Q到其内一点P(3,1)及焦点F的距离之和的最小值为4.
(1)求抛物线的方程;
(2)设动直线y=kx+b与抛物线交于A(x1,y1),B(x2,y2)两点,且|y1-y2|的值为定值a(a>0),过弦AB的中点M作平行于抛物线的轴的直线交抛物线于点D,求△ABD的面积.

查看答案和解析>>


同步练习册答案