求证:在已知二面角.从二面角的棱出发的一个半平面内的任意一点.到二面角两个面的距离的比是一个常数. 已知:二面角α-ED-β.平面过ED.A∈.AB⊥α.垂足是B.AC⊥β.垂足是C. 求证:AB∶AC=k 证明:过AB.AC的平面与棱DE交于点F.连结AF.BF.CF. ∵AB⊥α.AC⊥β.∴AB⊥DE.AC⊥DE. ∴DE⊥平面ABC.∴BF⊥DE.AF⊥DE.CF⊥DE. ∠BFA.∠AFC分别为二面角α-DE-.-DE-β的平面角.它们为定值. 在RtΔABF中.AB=AF·sin∠AFB. 在RtΔAFC中.AC=AF·sin∠AFC.得: ==定值. 查看更多

 

题目列表(包括答案和解析)

求证:在已知二面角,从二面角的棱出发的一个半平面内的任意一点,到二面角两个面的距离的比是一个常数.

已知:二面角α-ED-β,平面过ED,A∈,AB⊥α,垂足是B.AC⊥β,垂足是C.

求证:AB∶AC=k(k为常数)

查看答案和解析>>

精英家教网已知△ABC的一边BC在平面M内,从A作平面M的垂线,垂足是A1,设△ABC的面积是S,它与平面M组成的二面角等于α(0°<α<90°),求证:△A1BC的面积=S•cosα.

查看答案和解析>>

已知△ABC的一边BC在平面M内,从A作平面M的垂线,垂足是A1,设△ABC的面积是S,它与平面M组成的二面角等于α(0°<α<90°),求证:△A1BC的面积=S•cosα.

查看答案和解析>>

已知△ABC的一边BC在平面M内,从A作平面M的垂线,垂足是A1,设△ABC的面积是S,它与平面M组成的二面角等于α(0°<α<90°),求证:△A1BC的面积=S•cosα.

查看答案和解析>>

精英家教网如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0),M是线段EF的中点.
(1)求证:AC⊥BF;
(2)若二面角F-BD-A的大小为60°,求a的值;
(3)令a=1,设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值.

查看答案和解析>>


同步练习册答案