(2) 当, 即或时. 查看更多

 

题目列表(包括答案和解析)

当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援?(用角度的正弦或余弦表示)

查看答案和解析>>

2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断.5月12日晚,抗震救灾指挥部决定从水路(一支队伍);陆路(东南和西北两个方向各一支队伍);空中(一支队伍)同时向灾区挺进.在5月13日,仍时有较强余震发生,天气状况也不利于空中航行.已知当天从水路抵达灾区的概率是,从陆路每个方向抵达灾区的概率都是,从空中抵达灾区的概率是

(1)求在5月13日从水路或空中有队伍抵达灾区(即从水路和空中至少有一支队伍抵达灾区)的概率;

(2)求在5月13日至少有3支队伍抵达灾区的概率.

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

如果当项数n无限增大时,无穷数列{an}的项an无限地_________某一个常数a(即|an-a|无限地接近于___________),那么就说数列{an}以a为极限,或者说a是数列{an}的极限,记作an=a.

查看答案和解析>>

对命题“abc推出ac”,关于真假问题,甲、乙两个学生的判断如下:甲生判断是真命题.理由是:由ab可知ab的方向相同或相反,由bc可知cb的方向相同或相反,从而有ac的方向相同或相反,故ac,即原命题为真命题;乙生判断是假命题.理由是:当两个非零向量a,c不平行,而b=0时,显然abbc,但不能推出abc,故此时结论不成立,即原命题为假命题.究竟甲、乙两生谁的判断正确呢?请给以分析.

查看答案和解析>>


同步练习册答案