题目列表(包括答案和解析)
已知函数
。求函数
的单调递增区间和最小值;
【解析】第一问中利用三角函数的二倍角公式求解运算得到性质。利用二倍角公式求解
![]()
的最小值为-2
已知函数![]()
(1)求
的最小正周期;
(2)若
,求
的最大值、最小值及相应的x的值。
【解析】本试题主要是考查了三角函数的化简和变形,以及运用三角函数的性质求解最值问题的综合运用试题。
已知指数函数
,当
时,有
,解关于x的不等式![]()
【解析】本试题主要考查了指数函数,对数函数性质的运用。首先利用指数函数
,当
时,有
,,得到
,从而
等价于
,联立不等式组可以解得![]()
解:∵
在
时,有
,
∴
。
于是由
,得
,
解得
,
∴ 不等式的解集为
。
已知![]()
R
.
(1)求函数
的最大值,并指出此时
的值.
(2)若
,求
的值.
【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简
=
,然后利用
是,函数取得最大值
(2)中,结合(1)中的结论,然后由![]()
得
,两边平方得
即
,因此![]()
已知函数
,
(1)设常数
,若
在区间
上是增函数,求
的取值范围;
(2)设集合
,
,若
,求
的取值范围.
【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。
第一问中利用
![]()
利用函数的单调性得到,参数的取值范围。
第二问中,由于
解得参数m的取值范围。
(1)由已知
![]()
又因为常数
,若
在区间
上是增函数故参数![]()
(2)因为集合
,
,若![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com