边长为4的菱形ABCD中.M为AB的中点.DM=3.以DM为棱将菱形折起成60°的二面角A-MD-C.求折起后AC的长. 查看更多

 

题目列表(包括答案和解析)

如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=2
2

(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC;
(3)求二面角D-AB-O余弦值.

查看答案和解析>>

精英家教网如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离.

查看答案和解析>>

精英家教网如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点.
(Ⅰ)求异面直线AB与MD所成角的大小;
(Ⅱ)求点B到平面OCD的距离.

查看答案和解析>>

精英家教网如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点.
(Ⅰ)求异面直线AB与MD所成角的大小;
(Ⅱ)求平面OAB与平面OCD所成的二面角的余弦值.

查看答案和解析>>

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A-OD-C的余弦值.

查看答案和解析>>


同步练习册答案