证明:(I)直三棱柱.底面三边长.. ∴ .--2分 又.∴ 面-5分∴-7分 (II)设与的交点为.连结----9分 ∵ 是的中点.是的中点.∴ -11分 ∵ ..∴ --14分 查看更多

 

题目列表(包括答案和解析)

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

(2007•淄博三模)如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3
,D为棱CC1的中点.
(I)证明:A1C⊥平面AB1C1
(Ⅱ)设平面AB1C1与平面ABD所成的角为θ,求cosθ;
(Ⅲ)在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论.

查看答案和解析>>

精英家教网如图,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=a
,∠BAC=90°,D为棱d=
3
5
10
的中点.
(I)证明:A1D⊥平面ADC;
(II)求异面直线A1C与C1D所成角的大小;
(III)求平面A1CD与平面ABC所成二面角的大小(仅考虑锐角情况).

查看答案和解析>>

(2007•淄博三模)如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3
,D为棱CC1的中点.
(I)证明:A1C⊥平面AB1C1
(Ⅱ)求三棱锥A-A1B1O的体积;
(Ⅲ)在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论.

查看答案和解析>>


同步练习册答案