19.已知:△ABC, 求作:⊙O.使点O在线段AB上.并且⊙O 与AC.BC都相切. (保留作图痕迹.不要求写作法和证明) 查看更多

 

题目列表(包括答案和解析)

已知:梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=18,AB=a,点P是线段BC上的自C向B运精英家教网动的一动点,移动的速度是1厘米/秒,连接DP,作射线PE垂直于PD,PE与直线AB交于点E.
(1)确定CP=6时,点E的位置;
(2)若设运动时间为x秒,BE=y,求y关于x的函数关系式,并指出自变量x的取植范围;
(3)是否能在线段BC上找到不同的两个点P1,P2,使得上述作法得到的点E与点A重合?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知:如图,一次函数y=kx+b的图象与x轴、y轴分别交于点A(3,0),B(O,
3
).以线段AB为一边作等边△ABC,且点C在反比例函数y=
m
x
的图象上.
(1)求一次函数的关系式;
(2)求m的值;
(3)O是原点,在线段OB的垂直平分线上是否存在一点P,使得△ABP的面积等于
1
2
m?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,tan∠BAC=数学公式,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值?如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.

查看答案和解析>>

已知:直线y=﹣2x+2分别与x轴、y轴相交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,过C作CD⊥x轴于D.求:
(1)点A、B的坐标;
(2)AD的长;
(3)过A、B、C三点的抛物线的解析式;
(4)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案