A. B. C.20 D.10 查看更多

 

题目列表(包括答案和解析)

                                        (    )

    A.          B.10             C.20             D.10

 

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:

B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。

C.选修4—4 参数方程与极坐标

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。

D.选修4—5 不等式证明选讲

abc为正实数,求证:

查看答案和解析>>

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲
如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:
B.选修4—2 矩阵与变换
在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。
C.选修4—4 参数方程与极坐标
在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。
D.选修4—5 不等式证明选讲
abc为正实数,求证:

查看答案和解析>>

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:

B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。

C.选修4—4 参数方程与极坐标

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。

D.选修4—5 不等式证明选讲

abc为正实数,求证:

 

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分.

1.B   2.C   3.【理】C  【文】B    4.A    5.C   6.D

7.C   8.C   9.【理】D   【文】B    10.A   11.B 12.【理】C  【文】D

二、填空题:本大题共4小题,每小题5分,共20分.

13. 2           14.           15.     16.    

三、解答题:本大题共6小题,共70分.

17.(本题满分10分)

解:.……….2分

   (Ⅰ)

.             ………5分

   (Ⅱ)【理】    ………7分

.              ………10分

【文】        ………8分

 .          ………10分

18.(本题满分12分)

解:(Ⅰ)甲射击一次,未击中目标的概率为,     ………2分

因此,甲射击两次,至少击中目标一次的概率为.       ……...6分

(Ⅱ)设“甲、乙两人各射击两次,甲击中目标2次,乙未击中”为事件;“甲、乙两人各射击两次,乙击中目标2次,甲未击中”为事件;“甲、乙两人各射击两次,甲、乙各击中1次”为事件

;               ………7分

;              ………8分

.          ………9分

因为事件“甲、乙两人各射击两次,共击中目标2次”为,而彼此互斥,

所以,甲、乙两人各射击两次,共击中目标2次的概率为

.           ……….12 分     

19.(本题满分12分))

【理科】解:(Ⅰ)

两式相减得

从而,           ………3分

,可知..

.

数列是公比为2,首项为4的等比数列,           ………5分

因此  ()          ………6分

   (Ⅱ)据(Ⅰ)

(当且仅当n=5时取等号).                ………10分

恒成立,

因此的最小值是   .    ………12分

   【文科】(Ⅰ)∵等差数列中,公差

,                 ………3分

              ………6分

   (Ⅱ)      ,         ………8分

  令,即得,   ………10分

.

      数列为等差数列,∴存在一个非零常数,使也为等差数列.   ………12分

20.(本题满分12分)

证明(Ⅰ)法1:取中点,连接

  ∵中点,

平行且等于,

 又∵E为BC的中点,四边形为正方形,

平行且等于,

∴四边形为平行四边形,          ………3分

,又平面平面

因此,平面.                ………5分

法2:取AD的中点M,连接EM和FM,

∵F、E为PD和BC中点,

,

∴平面,           ………3分

平面

因此,平面.              ………5分

解(Ⅱ)【理科】:连接,连接并延长,交延长线于一点

连接,则为平面和平面的交线,

,           ………7分

平面,∴

又∵

平面

在等腰直角中,

平面

∴平面平面.           ………10分

又平面平面

平面

平面,∴为直线与平面所成的角.

,则

中,

因此,直线与平面所成的角.….………………12分

   (Ⅱ)【文科】

    承接法2,,又

,                         

平面

∴平面平面.                ………7 分

平面

为直线与平面所成的角.  ………9 分

中,

=.                   ………12分

21.(本小题满分12分)

【理科】解:(I)设双曲线C的焦点为

由已知

,         ……………2分

设双曲线的渐近线方程为

依题意,,解得

∴双曲线的两条渐近线方程为

故双曲线的实半轴长与虚半轴长相等,设为,则,得

∴双曲线C的方程为             ……………6分.

(II)由

直线与双曲线左支交于两点,

因此 ………………..9分

中点为

∴直线的方程为, 

x=0,得

  ∴ 

∴故的取值范围是.  ………………12分.

   【文科】解:(Ⅰ)由已知

于是……………..6分.

   (Ⅱ)

 

恒成立,

恒成立.      ……………….8分.

,则

上是增函数,在上是减函数,

从而处取得极大值所以的最大值是6,故.………………12分

 

 

22.(本小题满分12分)

   【理科】解:(Ⅰ) ……………2分

为增函数;

为减函数,

可知有极大值为…………………………..4分

(Ⅱ)欲使上恒成立,只需上恒成立,

由(Ⅰ)知,

……………………8分

(Ⅲ),由上可知上单调递增,

  ①,

 同理  ②…………………………..10分

两式相加得

    ……………………………………12分

【文科】见理科21题答案.

 

 

 

 [y1]Y cy


同步练习册答案