题目列表(包括答案和解析)
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
已知四棱锥
的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(1)证明:面
面
;
(2)求
与
所成的角;
(3)求面
与面
所成二面角的余弦值.
![]()
【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.
(2)建立空间直角坐标系,写出向量
与
的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.
(3)分别求出平面
的法向量和面
的一个法向量,然后求出两法向量的夹角即可.
设f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一问中,![]()
即
变换分为三步,①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;
第二问中因为
,所以
,则
,又![]()
,
,从而![]()
进而得到结论。
(Ⅰ) 解:![]()
即
。…………………………………3分
变换的步骤是:
①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;…………………………………3分
(Ⅱ) 解:因为
,所以
,则
,又![]()
,
,从而
……2分
(1)当
时,
;…………2分
(2)当
时;![]()
已知函数
,
(1)求函数
的定义域;
(2)求函数
在区间
上的最小值;
(3)已知
,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由
即![]()
![]()
第二问中,
,
得:
![]()
,
![]()
第三问中,由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,![]()
当命题p为假,命题q为真时,
,
所以![]()
某投资公司年初用
万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出
万元,第二年需要支出
万元,第三年需要支出
万元,……,每年都比上一年增加支出
万元,而每年的生产收入都为
万元.假设这套生产设备投入使用
年,
,生产成本等于生产设备购置费与这
年生产产品相关的各种配套费用的和,生产总利润
等于这
年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:
(Ⅰ)若
,求
的值;
(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:
方案一:当年平均生产利润取得最大值时,以
万元的价格出售该套设备;
方案二:当生产总利润
取得最大值时,以
万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com