2.第Ⅱ卷所有题目的答案考生需用黑色签字笔答在“数学 答题卡指定的位置上. 查看更多

 

题目列表(包括答案和解析)

每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.

1.设全集,则=

(A)          (B)      (C)       (D)

2.已知圆的方程为,那么下列直线中经过圆心的直线方程为

(A)                  (B)

(C)                  (D)

查看答案和解析>>

选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

查看答案和解析>>

(08年山东卷)(本小题满分12分)

将数列中的所有项按每一行比上一行多一项的规则排成如下数表:

 

    

      

记表中的第一列数构成的数列为为数列的前项和,且满足

(Ⅰ)证明数列成等差数列,并求数列的通项公式;

(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.

查看答案和解析>>

(2013•汕尾二模)同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖
100
100
块.

查看答案和解析>>

某中学高三(1)班共有50名学生,他们每天自主学习的时间在180到330分钟之间,将全班学生的自主学习时间作分组统计,得其频率分布如下表所示:
组序 分组 频数 频率
第一组 [180,210) 5 0.1
第二组 [210,240) 10 0.2
第三组 [240,270) 12 0.24
第四组 [270,300) a b
第五组 [300,330) 6 c
(1)求表中的a、b、c的值;
(2)某课题小组为了研究自主学习时间与成绩的相关性,需用分层抽样方法,从这50名学生中随机抽取20名作统计分析,求在第二组学生中应抽取多少人?
(3)已知第一组学生中有3名男生和2名女生,从这5名学生中随机抽取2人,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

 

一、选择题

CBACD  ADBAC  DB

二、填空题

13.    14.    15.    16.①③④

三、解答题

17.解:(1)由题设

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)设图象向左平移m个单位,得到函数的图象.

,…………………………8分

对称,

…………………………10分

…………………………12分

18.(本小题满分12分)

解:(1)设等差数列的公差为d,等比数列的公比为q,

由题设知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小题满分12分)

∵EF为△A­BC1的中位线,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1

而A1C1B1⊥面ACC1A1

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵

∴A1M⊥平面AFB1.…………………………12分

20.(本小题满分12分)

解:(1)先后两次抛掷一枚骰子,将得到的点数分别为a,b,

则事件总数为6×6=36…………2分

当a=1时,b=1,2,3,4

a=2时,b=1,2,3

a=3时,b=1,2

a=4,b=1

共有(1,1)(1,2)……

(4,1)10种情况…………6分

…………7分

(2)相切的充要条件是

满足条件的情况只有两种情况…………10分

……12分

21.(本小题满分12分)

解:(1)设

…………………………3分

,这就是轨迹E的方程.……………………4分

(2)当时,轨迹为椭圆,方程为①…………5分

设直线PD的方程为

代入①,并整理,得

   ②

由题意,必有,故方程②有两上不等实根.

设点

由②知,………………7分

直线QF的方程为

时,令

代入

整理得

再将代入,

计算,得x=1,即直线QF过定点(1,0)

当k=0时,(1,0)点……………………12分

22.(本小题满分14分)

解:(1)当a=0,b=3时,

,解得

x变化时,变化状态如下表:

0

(0,2)

2

+

0

-

0

+

0

-4

从上表可知=

……………………5分

(2)当a=0时,≥在恒成立,

在在恒成立,……………………………7分

d则

x>1时,>0,

是增函数,

b≤1.…………………………………………………………9分

(Ⅲ)∵ ,∴?=0,

,∴

由题知的两根,

>0………………………11分

则①式可化为

………………………………………………12分

当且仅当,即时取“=”.

的取值范围是 .……………………………………14分