(1)求点内的概率, 查看更多

 

题目列表(包括答案和解析)

 

内的概率为.

(i)当点C在圆周上运动时,求的最大值;

(ii)记平面与平面所成的角为,当取最大值时,

的值。

查看答案和解析>>

已知等腰中,.

(Ⅰ)在线段上任取一点,求使的概率;
(Ⅱ)在内任作射线,求使的概率.

查看答案和解析>>

已知在中,=,.

(1)过点内随机的作射线交斜边于点,求的概率;

(2)在斜边上随机的取一点,求的概率.

 

查看答案和解析>>

下列概率模型:
①从区间[-5,5]内任取一个数,求取到1的概率;
②从区间[-5,5]内任取一个数,求取到绝对值不大于1的数的概率;
③从区间[-5,5]内任取一个整数,求取到大于1的数的概率;
④向一个边长为5cm的正方形ABCD内投一点P,求点P离中心不超过1cm的概率.
其中,是几何概型的有__________.(填序号)

查看答案和解析>>

下列概率模型:
①从区间[-5,5]内任取一个数,求取到1的概率;
②从区间[-5,5]内任取一个数,求取到绝对值不大于1的数的概率;
③从区间[-5,5]内任取一个整数,求取到大于1的数的概率;
④向一个边长为5cm的正方形ABCD内投一点P,求点P离中心不超过1cm的概率.
其中,是几何概型的有__________.(填序号)

查看答案和解析>>

 

一、选择题

CBACD  ADBAC  DB

二、填空题

13.    14.    15.    16.①③④

三、解答题

17.解:(1)由题设

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)设图象向左平移m个单位,得到函数的图象.

,…………………………8分

对称,

…………………………10分

…………………………12分

18.(本小题满分12分)

解:(1)设等差数列的公差为d,等比数列的公比为q,

由题设知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小题满分12分)

∵EF为△A­BC1的中位线,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1

而A1C1B1⊥面ACC1A1

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵

∴A1M⊥平面AFB1.…………………………12分

20.(本小题满分12分)

解:(1)先后两次抛掷一枚骰子,将得到的点数分别为a,b,

则事件总数为6×6=36…………2分

当a=1时,b=1,2,3,4

a=2时,b=1,2,3

a=3时,b=1,2

a=4,b=1

共有(1,1)(1,2)……

(4,1)10种情况…………6分

…………7分

(2)相切的充要条件是

满足条件的情况只有两种情况…………10分

……12分

21.(本小题满分12分)

解:(1)设

…………………………3分

,这就是轨迹E的方程.……………………4分

(2)当时,轨迹为椭圆,方程为①…………5分

设直线PD的方程为

代入①,并整理,得

   ②

由题意,必有,故方程②有两上不等实根.

设点

由②知,………………7分

直线QF的方程为

时,令

代入

整理得

再将代入,

计算,得x=1,即直线QF过定点(1,0)

当k=0时,(1,0)点……………………12分

22.(本小题满分14分)

解:(1)当a=0,b=3时,

,解得

x变化时,变化状态如下表:

0

(0,2)

2

+

0

-

0

+

0

-4

从上表可知=

……………………5分

(2)当a=0时,≥在恒成立,

在在恒成立,……………………………7分

d则

x>1时,>0,

是增函数,

b≤1.…………………………………………………………9分

(Ⅲ)∵ ,∴?=0,

,∴

由题知的两根,

>0………………………11分

则①式可化为

………………………………………………12分

当且仅当,即时取“=”.

的取值范围是 .……………………………………14分