22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

 

一、选择题

CBACD  ADBAC  DB

二、填空题

13.    14.20     15.    16.①③④

三、解答题

17.解:(1)由题设

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)设图象向左平移m个单位,得到函数的图象.

,…………………………8分

对称,

…………………………10分

…………………………12分

18.(本小题满分12分)

解:(1)设等差数列的公差为d,等比数列的公比为q,

由题设知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小题满分12分)

证明:(1)取AC中点O,

∴PO⊥AC,

又∵面PAC⊥面ABC,PO面PAC,

∴PO⊥面ABC,……………………2分

连结OD,则OD//BC,

∴DO⊥AC,

由三垂线定理知AC⊥PD.……………………4分

(2)连接OB,过E作EF⊥OB于F,

又∵面POB⊥面ABC,

∴EF⊥面ABC,

过F作FG⊥AC,连接EG,

由三垂线定理知EG⊥AC,

∴∠EGF即为二面角E―AC―B的平面角…………6分

……………………9分

(3)由题意知

.…………………………12分

20.(本小题满分12分)

解:(1)设“生产一台仪器合格”为事件A,则

……………………2分

(2)每月生产合格仪器的数量可为3,2,1,0,则

所以的分布列为:

3

2

1

0

P

 

的数学期望

…………9分

(3)该厂每生产一件仪器合格率为

∴每台期望盈利为(万元)

∴该厂每月期望盈利额为万元……………………12分

21.(本小题满分12分)

解:(1)设

…………………………3分

,这就是轨迹E的方程.……………………4分

(2)当时,轨迹为椭圆,方程为①…………5分

设直线PD的方程为

代入①,并整理,得

   ②

由题意,必有,故方程②有两上不等实根.

设点

由②知,………………7分

直线QF的方程为

时,令

代入

整理得

再将代入,

计算,得x=1,即直线QF过定点(1,0)

当k=0时,(1,0)点……………………12分

22.(本小题满分14分)

解:(1)

由题知,即a-1=0,∴a=1.……………………………2分

x≥0,∴≥0,≥0,

又∵>0,∴x≥0时,≥0,

上是增函数.……………………4分

(Ⅱ)由(Ⅰ)知

下面用数学归纳法证明>0.

①当n=1时,=1>0成立;

②假设当时,>0,

上是增函数,

>0成立,

综上当时,>0.……………………………………6分

>0,1+>1,∴>0,

>0,∴,…………………………………8分

=1,∴≤1,综上,0<≤1.……………………………9分

(3)∵0<≤1,

,

,

,

>0,………………………………………11分

=??……

  =n.……………………………12分

∴Sn++…+

+()2+…+()n

==1.

∴Sn<1.………………………………………………………………14分