题目列表(包括答案和解析)
(本题满分12分)
已知椭圆E:
的右焦点F,过原点和x轴不重合的直线与椭圆E相交于A,B两点,且
,
最小值为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若圆
的切线L与椭圆E相交于P,Q两点,当P,Q两点横坐标不相等时,问OP与OQ是否垂直?若可以,请给出证明;若不可以,请说明理由。
(本小题满分12分)已知抛物线
:
,直线
交
于
两点,
是线段
的中点,过
作
轴的垂线交
于点
.
(Ⅰ)证明:抛物线
在点
处的切线与
平行;
(Ⅱ)是否存在实数
使
,若存在,求
的值;若不存在,说明理由.
(本小题满分12分)
已知抛物线
:
,直线
交
于
两点,
是线段
的中点,过
作
轴的垂线交
于点
.
(Ⅰ)证明:抛物线
在点
处的切线与
平行;
(Ⅱ)是否存在实数
使
,若存在,求
的值;若不存在,说明理由.
(本小题满分12分)
设椭圆
:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(1)求椭圆
的离心率;
(2)若过
、
、
三点的圆恰好与直线
:
相切,求椭圆
的
方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
、
两
点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,
如果存在,求出
的取值范围,如果不存在,说明理由.
![]()
(本小题满分12分)
已知椭圆
:
的右焦点
,过原点和
轴不重合的直线与椭圆
相交于
,
两点,且
,
最小值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若圆:
的切线
与椭圆
相交于
,
两点,当
,
两点横坐标不相等时,
问:
与
是否垂直?若垂直,请给出证明;若不垂直,请说明理由
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com