故方程的两根是.. 查看更多

 

题目列表(包括答案和解析)

已知二次函数的二次项系数为,且不等式的解集为,

(1)若方程有两个相等的根,求的解析式;

(2)若的最大值为正数,求的取值范围.

【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),

设出二次函数的解析式,然后利用判别式得到a的值。

第二问中,

解:(1)∵f(x)+2x>0的解集为(1,3),

   ①

由方程

              ②

∵方程②有两个相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故当f(x)的最大值为正数时,实数a的取值范围是

 

查看答案和解析>>

(本小题满分13分)

   某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间这三种情况发生的概率分别为,叉知是方程的两个根,且   (1)求的值;  (2)记表示销售两台这种家用电器的销售利润总和,求的期望.

查看答案和解析>>

学科 (本小题满分12分)学网 某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间这三种情况发生的概率分别为,叉知是方程的两个根,且学科网(1)求的值; (2)记表示销售两台这种家用电器的销售利润总和,求的期望.学科网

学科网

查看答案和解析>>

某种家用电器每台的销售利润与该电器的无故障使用时间T(单位:年)有关.若T≤1,则销售利润为0元;若1<T≤3,则销售利润为100元;若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率分别为p1,p2,p3,又知p1,p2是方程25x2-15x+a=0的两个根,且p2=p3

(Ⅰ)求p1,p2,p3的值;

(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列;

(Ⅲ)求销售两台这种家用电器的销售利润总和的平均值.

查看答案和解析>>

某种家用电器每台的销售利润与该电器的无故障使用时间T(单位:年)有关.若T≤1,则销售利润为0元;若1<T≤3,则销售利润为100元;若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率分别为P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的两个根,且P2=P3
(1)求P1,P2,P3的值;
(2)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列;
(3)求销售两台这种家用电器的销售利润总和的平均值.

查看答案和解析>>


同步练习册答案