题目列表(包括答案和解析)
设函数
是定义在R上的奇函数,且当x
0时,
单调递增,若数列
是等差数列,且
﹤0,
则
的值为:( )
A.恒为正数 B.恒为负数 C.恒为0 D.可正可负
设函数y=f(x)为定义在实数集上单调递增的奇函数,若
时,不等式
恒成立,则实数m的取值范围是
A.(0,1)
B.(-∞,1)
C.(-∞,
1)
D.(1,+∞)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
已知函数
其中常数![]()
(1)当
时,求函数
的单调递增区间;
(2)当
时,给出两类直线:
与
,其中
为常数,判断这两类直线中是否存在
的切线,若存在,求出相应的
或
的值,若不存在,说明理由.
(3)设定义在
上的函数
在点
处的切线方程为
,当
若
在
内恒成立,则称
为函数
的“类对称点”,当
时,试问
是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.
已知定义在
上的函数
满足
,当
时,
单调递增,若
且
,则
的值( )
A.可能为0 B.恒大于0 C.恒小于0 D.可正可负
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com