若bn<恒成立(n∈N*).则-2+<.即m> 查看更多

 

题目列表(包括答案和解析)

若函数f(x)=
1-x
mx
+lnx(m∈R+)

(1)若f(x)在[1,+∞)上为增函数,求m的范围.
(2)当m=1时,若a>b>1,比较f(aabb4a)与f[(a+b)a+b]的大小,并说明理由.
(3)当m=1时,设{an}为正项数列,且n≥2时[f′(an)•f′(an-1)+
an+an-1-1
a
2
n
a
2
n-1
]•an2=q,(其中q≥2010),an的前n项和为Snbn=
n
i=1
Si+1
SI
,若bn≥2011n恒成立,求q的最小值.

查看答案和解析>>

若函数
(1)若f(x)在[1,+∞)上为增函数,求m的范围.
(2)当m=1时,若a>b>1,比较f(aabb4a)与f[(a+b)a+b]的大小,并说明理由.
(3)当m=1时,设{an}为正项数列,且n≥2时[f′(an)•f′(an-1)+]•an2=q,(其中q≥2010),an的前n项和为Sn,若bn≥2011n恒成立,求q的最小值.

查看答案和解析>>

已知数列{an}的前n项和为Sn,且7an+Sn=8.
(1)求数列{an}的通项公式;
(2)设bn=an+1•(2n+1),是否存在常数m∈N*,使bn≤bm恒成立,若不存在说明理由,若存在求m的值.

查看答案和解析>>

(2011•韶关模拟)已知数列{an} (n∈N*)满足:a1=1,an+1-sin2θ•an=cos2θ•cos2nθ,其中θ∈(0,
π
2
)

(1)当θ=
π
4
时,求{an}的通项公式;
(2)在(1)的条件下,若数列{bn}中,bn=sin
πan
2
+cos
πan-1
4
(n∈N*,n≥2)
,且b1=1.求证:对于?n∈N*,1≤bn
2
恒成立;
(3)对于θ∈(0,
π
2
)
,设{an}的前n项和为Sn,试比较Sn+2与
4
sin2
的大小.

查看答案和解析>>

已知函数f(x)=
x
x+1
,数列{an}满足:an>0,a1=1,an+1=f(an),n∈N*
(Ⅰ)求数列{an}的通项an;(Ⅱ)若bn=
2
an
+1
,对任意正整数n,不等式
kn+1
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
-
kn
2+bn
≤0
恒成立,求正数k的取值范围.
(Ⅲ)求证:
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
33
20

查看答案和解析>>


同步练习册答案