依题意可设抛物线的方程为 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

小明家中有两种酒杯,一种酒杯的轴截面是等腰直角三角形,称之为直角酒杯(如图1),另一种酒杯的轴截面近似一条抛物线,杯口宽4 cm,杯深为8 cm(如图2),称之为抛物线酒杯.

(1)请选择适当的坐标系,求出抛物线酒杯的方程.

(2)一次,小明在游戏中注意到一个现象,若将一些大小不等的玻璃球依次放入直角酒杯中,则任何玻璃球能触及酒杯杯底.但若将这些玻璃球放入抛物线酒杯中,则有些小玻璃不能触及酒杯杯底.小明想用所学过数学知识研究一下,当玻璃球的半径r为多大值时,玻璃球一定会触及酒杯杯底部.你能帮助小明解决这个问题吗?

(3)在抛物线酒杯中,放入一根粗细均匀,长度为2 cm的细棒,假设细棒的端点与酒杯壁之间的摩擦可以忽略不计,那么当细棒最后达到平衡状态时,细棒在酒杯中位置如何?

查看答案和解析>>

小明家中有两种酒杯,一种酒杯的轴截面是等腰直角三角形,称之为直角酒杯,另一种酒杯的轴截面近似一条抛物线,杯口宽4 cm,杯深为8 cm,称之为抛物线酒杯.

(1)请选择适当的坐标系,求出抛物线酒杯的方程.

(2)一次,小明在游戏中注意到一个现象,若将一些大小不等的玻璃球依次放入直角酒杯中,则任何玻璃球都不能触及酒杯杯底.但若将这些玻璃球放入抛物线酒杯中,则有些小玻璃球能触及酒杯杯底.小明想用所学数学知识研究一下,当玻璃球的半径r为多大值时,玻璃球一定会触及酒杯杯底.你能帮助小明解决这个问题吗?

(3)在抛物线酒杯中,放入一根粗细均匀、长度为2 cm的细棒,假设细棒的端点与酒杯壁之间的摩擦可以忽略不计,那么当细棒最后达到平衡状态时,细棒在酒杯中位置如何?

查看答案和解析>>


同步练习册答案