A 根据反函数的性质.即求当x > 1时.函数的值域.此后注意到在上递增即可获解.[命题动向]本题考查反函数的概念与性质.函数的单调性.函数值域的求法.灵活驾驶基础知识和基本方法的能力. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x+
ax

(1)若f(2)=4,求a的值;
(2)x>0时,f(x)的图象如图,看图指出y=f(x)(x>0)的减区间,并证明你的结论.
(3)请根据函数的性质画出f(x)(x<0)的草图(无需列表).

查看答案和解析>>

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(Ⅰ)若x=
π
6
,求向量
a
c
的夹角;
(Ⅱ)当x∈[
π
2
8
]
时,求函数f(x)=2
a
b
+1
的最大值.

查看答案和解析>>

已知函数f (x)=ax2+bx+l( a,b∈R,a≠0 ),函数f (x)有且只有一个零点,且f (-1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)当x∈[-2,2]时,g( x)=f (x)-kx不是单调函数,求实数k的取值范围.

查看答案和解析>>

已知函数f(x)=asinx+bcosx的图象经过点(
π
6
,0),(
π
3
,1)

(Ⅰ)求实数a,b的值;
(Ⅱ)当x∈R时,求f(x)的单调递减区间;
(Ⅲ)若x∈[0,
π
2
],是否存在实数m使函数g(x)=
3
f(x)+m2
的最大值为4?若存在,求出实数m的值,若不存在,说明理由.

查看答案和解析>>

设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+
1x2
(a为实数).
(Ⅰ)求当x∈(0,1]时,f(x)的解析式;
(Ⅱ)若f(x)在(0,1]上是增函数,求a的取值范围;
(Ⅲ)是否存在a,使得当x∈(0,1]时,f(x)有最大值-6.

查看答案和解析>>


同步练习册答案