若..则在上单调递减.符合题意, 查看更多

 

题目列表(包括答案和解析)

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且

(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;

(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

【解析】第一问利用定义法求证单调性,并判定结论。

第二问(2)由函数的单调性知

,即t的取值范围是. 

时,记

 

上单调递减,在上单调递增,

第三问因为当且仅当时,.

故当时不超标,当时超标.

 

查看答案和解析>>

求“方程的解”有如下解题思路:设,则上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解集为      

 

查看答案和解析>>

求“方程的解”有如下解题思路:设,则上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解集为      

 

查看答案和解析>>

(本小题满分12分)已知,函数.

       (Ⅰ)当时,求函数f(x)的单调递增区间;

       (Ⅱ)若函数f(x)在上单调递减,求的取值范围;

(Ⅲ)若函数f(x)在上单调递增,求的取值范围.

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案