依题意.有.则. 查看更多

 

题目列表(包括答案和解析)

问题:自然状态下的鱼类是一种可再生的资源,为持续利用这一资源,需从宏观上考察其再生能力和捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,n∈N+,且x1>0,不考虑其他因素,设在第n年内鱼群的繁殖量及被捕捞量都与xn成正比,死亡量与x2n成正比,这些比例系数依次为正常数a,b,c.

    设a=2,c=1,为保证对任意x1∈(0,2),都有xn>0,n∈N+,则捕捞强度b的最大允许值是多少?证明你的结论.

查看答案和解析>>

(本小题满分12分)

(注意:在试题卷上作答无效)

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止;

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验。

求依方案甲所需化验次数不少于依方案乙所需化验次数的概率。

查看答案和解析>>

(本小题满分12分)
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止;
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验。
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率。

查看答案和解析>>

当a∈Q时,设原命题是“若a+b是无理数,则b是有理数”,给出下列四个命题:

①若b是有理数,则a+b无理数;

②若a+b有理数,则b是无理数;

③若a+b无理数,则b是无理数;

④若b是无理数,则a+b是有理数.

则其中分别是原命题的“逆命题”和“原命题的否定”的命题的序号依次是________.(填序号时注意前后的顺序)

查看答案和解析>>

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>


同步练习册答案