(II)由. 查看更多

 

题目列表(包括答案和解析)

(08年上虞市质检一理)已知椭圆C1 (0<a<,0<b<2)与椭圆C2有相同的焦点. 直线L:y=k(x+1)与两个椭圆的四个交点,自上而下顺次记为A、B、C、D.

(I)求线段BC的长(用k和a表示);

(II)是否存在这样的直线L,使线段AB、BC、CD的长按此顺序构成一个等差数列.请说明详细的理由.

查看答案和解析>>

(满分12分)直线l 与抛物线y2 = 4x 交于两点ABO 为原点,且= -4.
(I)       求证:直线l 恒过一定点;
(II)     若 4≤| AB | ≤,求直线l 斜率k 的取值范围;
(Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ 能否等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.

查看答案和解析>>

(本题满分12分)
如图6,在平面直角坐标系中,设点,直线:,点在直线上移动,
是线段轴的交点, .

(I)求动点的轨迹的方程
(II)设圆,且圆心在曲线上,是圆轴上截得的弦,当运动时弦长是否为定值?请说明理由.

查看答案和解析>>

由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(I )若视力测试结果不低于5 0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;

(II)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望,据此估计该校高中学生(共有5600人)好视力的人数

 

查看答案和解析>>

(本小题满分12分)

如图,在边长为4的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面⊥平面

(1)求证:⊥平面

(2)当取得最小值时,请解答以下问题:

(i)求四棱锥的体积;

(ii)若点满足= (),试探究:直线与平面所成角的大小是否一定大于?并说明理由.

 

查看答案和解析>>


同步练习册答案