若定义:两曲线在点M.N处的切线互相平行,且线段MN与切线垂直,则|MN|为分别在两曲线上的点连成线段长的最小值.已知,函数是定义在R上的单调递增函数,是它的反函数,且曲线y=f(x)与坐标轴的交点为A,曲线与坐标轴的交点为B,.|AB|为分别在两条曲线上的点连成线段长的最小值. 查看更多

 

题目列表(包括答案和解析)

已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>


同步练习册答案