若点M.N.则.十. 立体几何 查看更多

 

题目列表(包括答案和解析)

给出以下四个命题:
①若cosαcosβ=1,则sin(α+β)=0;
②已知直线x=m与函数f(x)=sinx,g(x)=sin(
π
2
-x)
的图象分别交于点M,N,则|MN|的最大值为
2

③若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ<-2;
④已知数列an的通项an=
3
2n-11
,其前n项和为Sn,则使Sn>0的n的最小值为12.
其中正确命题的序号为
 

查看答案和解析>>

16、以下四个命题:
①如果两个平面垂直,则其中一个平面内的任意一条直线
都垂直于另一个平面内无数条直线;②设m、n为两条不
同的直线,α、β是两个不同的平面,若α∥β,m⊥α,n∥β,则m⊥n,③“直线a⊥b”的充分而不必要条件是“a垂直于b在平面α内的射影”;④若点P到一个三角形三条边的距离相等,则点P在该三角形所在平面上的射影是该三角形的内心.其中正确的命题序号为
①②

查看答案和解析>>

6、在平面内,设半径分别为r1,r2的两个圆相离且圆心距为d,若点M,N分别在两个圆的圆周上运动,则|MN|的最大、最小值分别为d+r1+r2和d-r1-r2,在空间中,设半径分别为R1,R2的两个球相离且球心距为d,若点M,N分别在两个球面上运动,则|MN|的最大、最小值分别为(  )

查看答案和解析>>

(2012•泉州模拟)某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.

(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.
(i) 甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H-ACF的高.请你根据甲工程师的思路,求该三棱锥的高.
(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).

查看答案和解析>>

(2012•海淀区二模)已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).若点M,N到直线l的距离相等,则实数k的值是
1或
1
3
1或
1
3
;对于l上任意一点P,∠MPN恒为锐角,则实数k的取值范围是
(-∞,-
1
7
)∪(1,+∞)
(-∞,-
1
7
)∪(1,+∞)

查看答案和解析>>


同步练习册答案