11.=a-. 在上是增函数, 上恒成立.求实数a的取值范围. [解析] 时.f(x)=a-. 设0<x1<x2.则x1x2>0.x2-x1>0. f(x1)-f(x2)=-=- =<0. ∴f(x1)<f(x2).即f上是增函数. (2)由题意a-<2x在上恒成立. 设h在上恒成立. 可证h上单调递增. 故a≤h(1)即a≤3.∴a的取值范围为(-∞.3]. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=a.

(1)求证:函数yf(x)在(0,+∞)上是增函数;

(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=a

(1)求证:函数yf(x)在(0,+∞)上是增函数;

(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=a

(1)求证:函数yf(x)在(0,+∞)上是增函数;

(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=(a>0且a≠1)

(1)证明:函数y=f(x)的图象关于点()对称;

(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.

查看答案和解析>>

已知函数f(x)=ln(x-1)+(a∈R).

(1)若a=2时,试证明:当x≥2时,f(x)≥1;

(2)如果函数y=f(x)是定义域上的增函数,求a的取值范围;

(3)求证:ln(n+1)>+…+(n∈N*).

查看答案和解析>>


同步练习册答案