复数且.则的值为; [解]∵ 所以. 查看更多

 

题目列表(包括答案和解析)

已知命题“椭圆的焦点在轴上”;

命题上单调递增,若“”为假,求的取值范围.

【解析】主要考查了命题中复合命题的真值问题的判定,以及椭圆,导数的运用。

首先求解若p为真,则m2.

若q为真,=0在R上恒成立。

所以      所以

而要是为假,则,这样就可以得到了。

若p为真,则m2.                                              2分

   若q为真,=0在R上恒成立。      

所以      所以                        3分

为假,所以为真                                    2分

所以m2且,     所以

 

查看答案和解析>>

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>


同步练习册答案