因为N是DC中点,BD=BC,所以,又因为DC是面ABCD与面的交线,而面ABCD⊥面, 查看更多

 

题目列表(包括答案和解析)

(2013•青岛一模)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,N是PB中点,过A、N、D三点的平面交PC于M.
(Ⅰ)求证:PD∥平面ANC;
(Ⅱ)求证:M是PC中点;
(Ⅲ)若PD⊥底面ABCD,PA=AB,BC⊥BD,证明:平面PBC⊥平面ADMN.

查看答案和解析>>

如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ)证明:OD//平面ABC;

(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四边形BDOF是平行四边形。

∴OD∥FB

第二问中,当N是EM中点时,ON⊥平面ABDE。           ………7分

证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,N是PB中点,过A、N、D三点的平面交PC于M.
(Ⅰ)求证:PD∥平面ANC;
(Ⅱ)求证:M是PC中点;
(Ⅲ)若PD⊥底面ABCD,PA=AB,BC⊥BD,证明:平面PBC⊥平面ADMN.

查看答案和解析>>

精英家教网正方体ABCD-A1B1C1D1中,M是BB1中点,N是AB中点.
求证:直线C1M、DN、BC三线共点.

查看答案和解析>>

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>


同步练习册答案