奇函数:对于函数的定义域内任意一个.都有 (或).则称为奇函数. 查看更多

 

题目列表(包括答案和解析)

函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,且满足以下3个条件。

(1)定义域中的数,,则

(2),(是一个正的常数)

(3)当时,

证明:(1)是奇函数;

(2)是周期函数,并求出其周期;

(3)内为减函数。

 

 

查看答案和解析>>

函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,且满足以下3个条件。

(1)定义域中的数,,则

(2),(是一个正的常数)

(3)当时,

证明:(1)是奇函数;

(2)是周期函数,并求出其周期;

(3)内为减函数。

 

 

查看答案和解析>>

函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,且满足以下3个条件。
(1)定义域中的数,,则
(2),(是一个正的常数)
(3)当时,
证明:(1)是奇函数;
(2)是周期函数,并求出其周期;
(3)内为减函数。

查看答案和解析>>

设函数f(x)的定义域关于原点对称,对定义域内任意的x存在x1和x2,使x=x1-x2,且满足:
(1)f(x1-x2)=
f(x1)-f(x2)1+f(x1)•f(x2)

(2)当0<x<4时,f(x)>0
请回答下列问题:
(1)判断函数的奇偶性并给出理由;
(2)判断f(x)在(0,4)上的单调性并给出理由.

查看答案和解析>>

(1)已知函数的定义域为是奇函数,且当时,,若函数的零点恰有两个,则实数的取值范围是(  )

A. B.
C. D.
(2)对于函数在其定义域内任意的,有如下结论:



.
上述结论中正确结论的序号是________.

查看答案和解析>>


同步练习册答案