利用递推法 例10 设函数f(x)的定义域为R,且对任意实数x,都有f,求证:f(x)是周期函数. 解 ∵ f, ∴ f, 将以上两式相加,得 f, ∴ f, ∴ f(x)是周期函数,6是它的一个周期. 例11 f(x)是定义在正整数集的函数,且满足f+xy (x,y∈N+),f的解析式. 解 令y=1, ∵ f(1)=1, ∴ f+x, 即f=x+1, 则 f=2, f=3, -- f=x. 将以上各式相加,得 f=2+3+4+ -+x, ∴ f(x)=1+2+3+4+-+x=x(x+1) (x∈N+). 查看更多

 

题目列表(包括答案和解析)

已知数列{an}满足递推式(n+1)an=nan+1,而a1=1,通过计算a2,a3,a4,猜想an=(  )

查看答案和解析>>

用数学归纳法证明等式  
1
n+1
+
1
n+2
+…+
1
3n+1
>1(n≥2)
的过程中,由n=k递推到n=k+1时不等式左边(  )

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

已知函数,数列的项满足: ,(1)试求

(2) 猜想数列的通项,并利用数学归纳法证明.

【解析】第一问中,利用递推关系,

,   

第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(数学归纳法证明)i) ,  ,命题成立

ii) 假设时,成立

时,

                              

综合i),ii) : 成立

 

查看答案和解析>>

数列,满足

(1)求,并猜想通项公式

(2)用数学归纳法证明(1)中的猜想。

【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到,并猜想通项公式

第二问中,用数学归纳法证明(1)中的猜想。

①对n=1,等式成立。

②假设n=k时,成立,

那么当n=k+1时,

,所以当n=k+1时结论成立可证。

数列,满足

(1)并猜想通项公。  …4分

(2)用数学归纳法证明(1)中的猜想。①对n=1,等式成立。  …5分

②假设n=k时,成立,

那么当n=k+1时,

,             ……9分

所以

所以当n=k+1时结论成立                     ……11分

由①②知,猜想对一切自然数n均成立

 

查看答案和解析>>


同步练习册答案