(15)已知复数 ( 为实数. 为虚数单位)..且 为纯虚数. 查看更多

 

题目列表(包括答案和解析)

已知复数均为实数,为虚数单位,且对于任意复数

(1)试求的值,并分别写出表示的关系式;

(2)将()作为点的坐标,()作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点

当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;

(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

查看答案和解析>>

已知复数均为实数,为虚数单位,且对于任意复数
(1)试求的值,并分别写出表示的关系式;
(2)将()作为点的坐标,()作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点
当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;
(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

查看答案和解析>>

已知复数(a∈R,i为虚数单位),若z是纯虚数,则实数a等于( )
A.
B.
C.1
D.-1

查看答案和解析>>

已知复数(a∈R,i为虚数单位),若z是纯虚数,则实数a等于( )
A.
B.
C.1
D.-1

查看答案和解析>>

已知复数(a∈R,i为虚数单位),若z是纯虚数,则实数a等于
[     ]
A.
B.-
C.1
D.-1

查看答案和解析>>

 

一.选择题(本大题共12小题,每小题5分,共60分.)

D C B B C       D C A C C       A B

二.填空题(本大题共4小题,每小题4分,共16分.)

(13)        (14)        (15)        (16)―1

三.解答题

(17)(本小题满分12分)

解:(Ⅰ)将一颗骰子先后抛掷2次,此问题中含有36个等可能的基本事件.    2分

记“两数之和为7”为事件A,则事件A中含有6个基本事件(将事件列出更好),

∴ P(A)

记“两数之和是4的倍数”为事件B,则事件B中含有9个基本事件,

∴ P(B)

    ∵ 事件A与事件B是互斥事件,∴ 所求概率为 .         8分

    (Ⅱ)记“点(x,y)在圆  的内部”事件C,则事件C中共含有11个基本事件,∴ P(C)=.                                                   12分

(18)(本小题满分12分)

解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

又∵M、N分别是AA1、CC1的中点,

∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

(Ⅱ)∵MN∥AC,∴A C ∥ 平面MNQ.

QN是△B1CC1的中位线,∴B1C∥QN.∴B1C∥平面MNQ.

∴平面AB1 C ∥ 平面MNQ.                                               8分

(Ⅲ)由题意,△MNP的面积

Q点到平面ACC1A1的距离H显然等于△A1B1C1的高的一半,也就是等于BP的一半,

.∴三棱锥 Q ― MNP 的体积.              12分

(19)(本小题满分12分)

解:(Ⅰ):

          3分

依题意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值为 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵

.解得

又 ∵ 0, ∴ .                                 12分

(20)(本小题满分12分)

解:(Ⅰ)对求导得

依题意有 ,且 .∴ ,且

解得 . ∴ .                             6分

(Ⅱ)由上问知,令,得

显然,当  或  时,;当  时,

.∴ 函数上是单调递增函数,在上是单调递减函数.

时取极大值,极大值是

时取极小值,极小值是.   12分

(21)(本小题满分12分)

解:(Ⅰ)∵

设O关于直线

对称点为的横坐标为

又易知直线  解得线段的中点坐标

为(1,-3).∴

∴ 椭圆方程为 .                                           5分

(Ⅱ)显然直线AN存在斜率,设直线AN的方程为 ,代入 并整理得:. 

设点,则

由韦达定理得 .                       8分

∵ 直线ME方程为 ,令,得直线ME与x轴的交点

的横坐标

代入,并整理得 .   10分

再将韦达定理的结果代入,并整理可得

∴ 直线ME与轴相交于定点(,0).                                  12分

(22)(本小题满分14分)

证明:(Ⅰ)∵ , ∴

显然 , ∴ .                                       5分

,……,

将这个等式相加,得 ,∴ .          7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 

 

 


同步练习册答案