的直线与抛物线 相交于 A.B 两点.O 为坐标原点.则 . (17)(本小题满分12分)将一颗骰子先后抛掷2次.观察向上的点数.求(Ⅰ)两次向上的点数之和为7或是4的倍数的概率, 查看更多

 

题目列表(包括答案和解析)

 直线与抛物线相交于A,B两点,F是抛物线的焦点。

(1)求证:“如果直线过点T(3,0),那么”是真命题

(2)设是抛物线上三点,且成等差数列。当AD的垂直平分线与轴交于点T(3,0)时,求点B的坐标。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知点(0,1),,直线都是圆 的切线(点不在轴上). 以原点为顶点,且焦点在轴上的抛物线C恰好过点P.

(1)求抛物线C的方程;

(2)过点(1,0)作直线与抛物线C相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由.

查看答案和解析>>

(9分)已知动直线与抛物线相交于A点,动点B的坐标是

(Ⅰ)求线段AB的中点M的轨迹的方程;

(Ⅱ)若过点N10的直线交轨迹两点,点是坐标原点,若面积为4,求直线的倾斜角.

查看答案和解析>>

抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值.
(1)用m,x表示f(x)=0.
(2)比较a,b,m,n的大小(要求按从小到大排列).
(3)若m+n≤2
2
,且过原点存在两条互相垂直的直线与曲线y=(x)均相切,求y=f(x)

查看答案和解析>>

抛物线y=-
12
x2
与过点M(0,-1)的直线l相交于A、B两点,O为坐标原点,若直线OA和OB的斜率之和为2,求直线l的方程以及线段AB的长.

查看答案和解析>>

 

一.选择题(本大题共12小题,每小题5分,共60分.)

D C B B C       D C A C C       A B

二.填空题(本大题共4小题,每小题4分,共16分.)

(13)        (14)        (15)        (16)―1

三.解答题

(17)(本小题满分12分)

解:(Ⅰ)将一颗骰子先后抛掷2次,此问题中含有36个等可能的基本事件.    2分

记“两数之和为7”为事件A,则事件A中含有6个基本事件(将事件列出更好),

∴ P(A)

记“两数之和是4的倍数”为事件B,则事件B中含有9个基本事件,

∴ P(B)

    ∵ 事件A与事件B是互斥事件,∴ 所求概率为 .         8分

    (Ⅱ)记“点(x,y)在圆  的内部”事件C,则事件C中共含有11个基本事件,∴ P(C)=.                                                   12分

(18)(本小题满分12分)

解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

又∵M、N分别是AA1、CC1的中点,

∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

(Ⅱ)∵MN∥AC,∴A C ∥ 平面MNQ.

QN是△B1CC1的中位线,∴B1C∥QN.∴B1C∥平面MNQ.

∴平面AB1 C ∥ 平面MNQ.                                               8分

(Ⅲ)由题意,△MNP的面积

Q点到平面ACC1A1的距离H显然等于△A1B1C1的高的一半,也就是等于BP的一半,

.∴三棱锥 Q ― MNP 的体积.              12分

(19)(本小题满分12分)

解:(Ⅰ):

          3分

依题意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值为 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵

.解得

又 ∵ 0, ∴ .                                 12分

(20)(本小题满分12分)

解:(Ⅰ)对求导得

依题意有 ,且 .∴ ,且

解得 . ∴ .                             6分

(Ⅱ)由上问知,令,得

显然,当  或  时,;当  时,

.∴ 函数上是单调递增函数,在上是单调递减函数.

时取极大值,极大值是

时取极小值,极小值是.   12分

(21)(本小题满分12分)

解:(Ⅰ)∵

设O关于直线

对称点为的横坐标为

又易知直线  解得线段的中点坐标

为(1,-3).∴

∴ 椭圆方程为 .                                           5分

(Ⅱ)显然直线AN存在斜率,设直线AN的方程为 ,代入 并整理得:. 

设点,则

由韦达定理得 .                       8分

∵ 直线ME方程为 ,令,得直线ME与x轴的交点

的横坐标

代入,并整理得 .   10分

再将韦达定理的结果代入,并整理可得

∴ 直线ME与轴相交于定点(,0).                                  12分

(22)(本小题满分14分)

证明:(Ⅰ)∵ , ∴

显然 , ∴ .                                       5分

,……,

将这个等式相加,得 ,∴ .          7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 

 

 


同步练习册答案