19.从(0.1)中随机地抽取两个数.求下列情况的概率: 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

在“家电下乡”活动中,某品牌家电厂家从某地购买该品牌家电的用户中随机抽取20名用户进行满意度调查.设满意度最低为0,最高为10,抽查结果统计如下:

满意度分组

用户数

1

2

4

5

8

(1)完成下列频率分布直方图:

(2)估计这20名用户满意度的中位数(写出计算过程);

(3)设第四组(即满意度在区间内)的5名用户的满意度数据分别为:,先从中任取两名不同用户的满意度数据,求的概率.

查看答案和解析>>

(本小题满分12分)

在“家电下乡”活动中,某品牌家电厂家从某地购买该品牌家电的用户中随机抽取20名用户进行满意度调查.设满意度最低为0,最高为10,抽查结果统计如下:

满意度分组

用户数

1

2

4

5

8

(1)完成下列频率分布直方图:

(2)估计这20名用户满意度的中位数(写出计算过程);

(3)设第四组(即满意度在区间内)的5名用户的满意度数据分别为:,先从中任取两名不同用户的满意度数据,求的概率.

查看答案和解析>>

(本小题满分12分)

设O为坐标原点,点P的坐标

   (I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;

   (II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

查看答案和解析>>

(本小题满分12分)

设O为坐标原点,点P的坐标

   (I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;

   (II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

 

查看答案和解析>>

(本小题满分12分)

设O为坐标原点,点P的坐标

   (1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;

   (2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

查看答案和解析>>

一、选择题   A D B A C      B A D A C  B  B

二、填空题

13. 14π.    14..   15.  .16.①②③

三、解答题

17.(1) =

=

==

==.

的最小正周期

(2) ∵,  ∴.

∴当,即=时,有最大值;

,即=时,有最小值-1.

18. (1)连结,则的中点,

在△中,

平面平面

∥平面 

   (2) 因为平面平面,

,

,所以,⊥平面

∴四边形 是矩形,

且侧面⊥平面

的中点,,

平面.

所以,多面体的体积

 

19.(1)   (2)

20.(1)

,于是

为首相和公差均为1的等差数列.

, 得, 

(2),

,

两式相减,得,

解出

21.(1)∵

上是增函数,在[0,3]上是减函数.

∴ 当x=0时取得极小值.∴.  ∴b=0 

  (2) ∵方程有三个实根, ∴a≠0 

=0的两根分别为 

上是增函数,在[0,3]上是减函数.

时恒成立,时恒成立.

由二次函数的性质可知.

  ∴.  故实数的取值范围为.

22. 解:(1)∵点A在圆

      

       由椭圆的定义知:|AF1|+|AF2|=2a

        

   (2)∵函数

  

           点F1(-1,0),F2(1,0), 

           ①若

       ∴

       ②若ABx轴不垂直,设直线AB的斜率为k,则AB的方程为y=kx+1)

       由…………(*)

       方程(*)有两个不同的实根.

       设点Ax1,y1),Bx2,y2),则x1x2是方程(*)的两个根

        

      

      

        

      

       由①②知

 

 

 

 


同步练习册答案