21. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

(本小题满分12分)

某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?

 

查看答案和解析>>

(本小题满分12分)

已知a,b是正常数, ab, xy(0,+∞).

   (1)求证:,并指出等号成立的条件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的结论求函数的最小值,并指出取最小值时相应的x 的值.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

一、选择题   A D B A C      B A D A C  B  B

二、填空题

13. 14π.    14..   15.  .16.①②③

三、解答题

17.(1) =

=

==

==.

的最小正周期

(2) ∵,  ∴.

∴当,即=时,有最大值;

,即=时,有最小值-1.

18. (1)连结,则的中点,

在△中,

平面平面

∥平面 

   (2) 因为平面平面,

,

,所以,⊥平面

∴四边形 是矩形,

且侧面⊥平面

的中点,,

平面.

所以,多面体的体积

 

19.(1)   (2)

20.(1)

,于是

为首相和公差均为1的等差数列.

, 得, 

(2),

,

两式相减,得,

解出

21.(1)∵

上是增函数,在[0,3]上是减函数.

∴ 当x=0时取得极小值.∴.  ∴b=0 

  (2) ∵方程有三个实根, ∴a≠0 

=0的两根分别为 

上是增函数,在[0,3]上是减函数.

时恒成立,时恒成立.

由二次函数的性质可知.

  ∴.  故实数的取值范围为.

22. 解:(1)∵点A在圆

      

       由椭圆的定义知:|AF1|+|AF2|=2a

        

   (2)∵函数

  

           点F1(-1,0),F2(1,0), 

           ①若

       ∴

       ②若ABx轴不垂直,设直线AB的斜率为k,则AB的方程为y=kx+1)

       由…………(*)

       方程(*)有两个不同的实根.

       设点Ax1,y1),Bx2,y2),则x1x2是方程(*)的两个根

        

      

      

        

      

       由①②知

 

 

 

 


同步练习册答案