的直线与抛物线 相交于 A.B 两点.O 为坐标原点.则 . 查看更多

 

题目列表(包括答案和解析)

 直线与抛物线相交于A,B两点,F是抛物线的焦点。

(1)求证:“如果直线过点T(3,0),那么”是真命题

(2)设是抛物线上三点,且成等差数列。当AD的垂直平分线与轴交于点T(3,0)时,求点B的坐标。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知点(0,1),,直线都是圆 的切线(点不在轴上). 以原点为顶点,且焦点在轴上的抛物线C恰好过点P.

(1)求抛物线C的方程;

(2)过点(1,0)作直线与抛物线C相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由.

查看答案和解析>>

(9分)已知动直线与抛物线相交于A点,动点B的坐标是

(Ⅰ)求线段AB的中点M的轨迹的方程;

(Ⅱ)若过点N10的直线交轨迹两点,点是坐标原点,若面积为4,求直线的倾斜角.

查看答案和解析>>

抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值.
(1)用m,x表示f(x)=0.
(2)比较a,b,m,n的大小(要求按从小到大排列).
(3)若m+n≤2
2
,且过原点存在两条互相垂直的直线与曲线y=(x)均相切,求y=f(x)

查看答案和解析>>

抛物线y=-
12
x2
与过点M(0,-1)的直线l相交于A、B两点,O为坐标原点,若直线OA和OB的斜率之和为2,求直线l的方程以及线段AB的长.

查看答案和解析>>

 

一.选择题(本大题共12小题,每小题5分,共60分.)

D C B B C       D C A C C       A A

二.填空题(本大题共4小题,每小题4分,共16分.)

(13)       (14)        (15)―1        (16)

三.解答题

(17)(本小题满分12分)

解:(Ⅰ):

          3分

依题意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值为 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵

.解得

又 ∵ 0, ∴ .                                 12分

(18)(本小题满分12分)

解:以A点为原点,AB为轴,AD为轴,AD

轴的空间直角坐标系,如图所示.则依题意可知相

关各点的坐标分别是A(0,0,0),B(,0,0),

C(,1,0),D(0,1,0),S(0,0,1),

   ∴ M(,1,0),N().                                  2分

   ∴ (0,),,0,0),).    4分

   ∴ .∴

   ∴ MN ⊥平面ABN.                                                      6分

   (Ⅱ)设平面NBC的法向量为),则.且又易知

   ∴   即    ∴

   令,则,0,).                                           9分

   显然,(0,)就是平面ABN的法向量.

   ∴ 二面角的余弦值是.                                    12分

(19)(本小题满分12分)

解:(Ⅰ)由题意得

 

);                             3分

同理可得);

).                           5分

(Ⅱ)       8分

(Ⅲ)由上问知 ,即是关于的三次函数,设

,则

,解得  或 (不合题意,舍去).

显然当  时,;当  时,

∴ 当年产量   时,随机变量  的期望  取得最大值.              12分

(20)(本小题满分12分)

解:(Ⅰ)设)是函数 的图象上任意一点,则容易求得点关于直线  的对称点为),依题意点)在的图象上,

. ∴ .            2分

 的一个极值点,∴ ,解得

∴ 函数  的表达式是 ).            4分

∵ 函数  的定义域为(), ∴  只有一个极值点,且显然当

时,;当时,

∴ 函数  的单调递增区间是;单调递减区间是.           6分

(Ⅱ)由

,∴      9分

 在 时恒成立.

∴ 只需求出  在   时的最大值和  在

 时的最小值,即可求得  的取值范围.

(当  时);

(当  时).

∴   的取值范围是 .                                         12分

 

(21)(本小题满分12分)

解:(Ⅰ)∵

设O关于直线

对称点为的横坐标为

又易知直线  解得线段的中点坐标

为(1,-3).∴

∴ 椭圆方程为 .                                           5分

(Ⅱ)显然直线AN存在斜率,设直线AN的方程为 ,代入 并整理得:. 

设点,则

由韦达定理得 .                       8分

∵ 直线ME方程为 ,令,得直线ME与x轴的交点的横坐标

代入,并整理得 .   10分

再将韦达定理的结果代入,并整理可得

∴ 直线ME与轴相交于定点(,0).                                  12分

(22)(本小题满分14分)

证明:(Ⅰ)∵ ,且 N?),

∴  .                                                            2分

去分母,并整理得 .                      5分

,……,

将这个同向不等式相加,得 ,∴ .    7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 


同步练习册答案