题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
Ⅰ选择题
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非选择题
13.
14. 
15.
16. (2) (3)
17. 解:
(4分)
(1)增区间为:
, 减区间为:
(8分)
(2)
(12分)
18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为x,另一枚骰子朝下的面上的数字为y,则
的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
从表中可得:
(8分)
(2)p(
=奇数)
………………12分
19.解:(1)

∴
(2分)
又
恒成立 ∴
∴
∴
∴
(6分)
(2)
∴
∴ ①)当
时, 解集为
②当
时,解集为
③当
时,解集为
(12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如图所示空间直角坐标系Oxyz
(1)

∴


∴

∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD与PC夹角为所求
∴ 所求二面角E-AD-B的大小为
(8分)
(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=
,AD=2
∴ 
∴ 所求部分体积
(12分)
21.解:(1)


为等比数列 






(4分)
(2)



(6分)
(3)





(7分)





(10分)
∴M≥6 
















(12分)
22.解:(1)直线AB的方程为:
与抛物线的切点设为T
且
∴


∴抛物线c的方程为:
(3分)
⑵设直线l的方程为
:
易如:
设
,


①M为AN中点 
由 (Ⅰ)、(Ⅱ)联解,得
代入(Ⅱ)

4
∴直线l的方程为 :
(7分)
②
(9分)
FM为∠NFA的平分线
且
(11分)
又

(14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com