题目列表(包括答案和解析)
(12分)如图,等腰直角△ABC中,
ABC
,EA
平面ABC,FC//EA,EA = FC = AB = ![]()
(Ⅰ)求证:AB
平面BCF;
(Ⅱ)求二面角A-EB-F的某三角函数值
![]()
(12分)如图,等腰直角△ABC中,
ABC
,EA
平面ABC,FC//EA,EA = FC = AB = ![]()
(Ⅰ)求证:AB
平面BCF;
(Ⅱ)证明五点A.B.C.E.F在同一个球面上,并求A.F两点的球面距离。
![]()
![]()
![]()
已知:如图,等腰直角三角形
的直角边
,沿其中位线
将平面
折起,使平面
⊥平面
,得到四棱锥
,设
、
、
、
的中点分别为
、
、
、
.![]()
![]()
![]()
(1)求证:
、
、
、
四点共面;
(2)求证:平面
平面
;
(3)求异面直线
与
所成的角.
已知:如图,等腰直角三角形
的直角边
,沿其中位线
将平面
折起,使平面
⊥平面
,得到四棱锥
,设
、
、
、
的中点分别为
、
、
、
.
![]()
![]()
![]()
(1)求证:
、
、
、
四点共面;
(2)求证:平面
平面
;
(3)求异面直线
与
所成的角.
一、选择题:
ADBAA BCCDC
二、填空题:
11.
; 12.
; 13.试卷.files/image211.gif)
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii)
.
三、解答题:
16.解:(Ⅰ)试卷.files/image215.gif)
试卷.files/image217.gif)
…………5分
由
成等比数列,知
不是最大边
…………6分
(Ⅱ)由余弦定理试卷.files/image225.gif)
试卷.files/image227.gif)
得ac=2 …………11分
=
…………12分
17.解:(Ⅰ)第一天通过检查的概率为
,
………………………2分
第二天通过检查的概率为
,
…………………………4分
由相互独立事件得两天全部通过检查的概率为
. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为
, …………8分
第二天通过而第一天不通过检查的概率为
,
………………10分
由互斥事件得恰有一天通过检查的概率为
. ……………………12分
18.解:方法一
(Ⅰ)取
的中点
,连结
,由
知
,又试卷.files/image257.gif)
,故
,所以
即为二面角
的平面角.
在△
中,
,
,
,
由余弦定理有
,
所以二面角
的大小是
.
(6分)
(Ⅱ)由(Ⅰ)知道
平面
,故平面
平面
,故
在平面
上的射影一定在直线
上,所以点
到平面
的距离即为△
的边
上的高.
故
.
…(12分)
19.解:(Ⅰ)设
则
……①
……②
∴②-①得 2d2=0,∴d=p=0
试卷.files/image293.gif)
∴
…………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:试卷.files/image299.gif)
试卷.files/image301.gif)
相减得: 试卷.files/image303.gif)
∴试卷.files/image305.gif)
试卷.files/image307.gif)
相减得:试卷.files/image309.gif)
又试卷.files/image311.gif)
试卷.files/image313.gif)
又
∴
………………………………13分
20.解:(Ⅰ)∵
,∴
,
又∵
,∴
,
∴
,
∴椭圆的标准方程为
.
………(3分)
当
的斜率为0时,显然
=0,满足题意,
当
的斜率不为0时,设
方程为
,
代入椭圆方程整理得:
.
,
,
.
则试卷.files/image343.gif)
试卷.files/image345.gif)
,
而试卷.files/image349.gif)
∴
,从而
.
综合可知:对于任意的割线
,恒有
.
………(8分)
(Ⅱ)
,
即:
,
当且仅当
,即
(此时适合于
的条件)取到等号.
∴三角形△ABF面积的最大值是
. ………………………………(13分)
21.解:(Ⅰ)
……………………………………………4分
(Ⅱ)
或者
……………………………………………8分
(Ⅲ)略 ……………………………………13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com