题目列表(包括答案和解析)
甲乙两位同学利用穿过打点计时器的纸带来记录小车的运动,计时器所用电源的频率为50Hz。
(1)实验后,甲同学选择了一条较为理想的纸带,测量数据后,通过计算得到了小车运动过程中各计时时刻的速度如表格所示。
|
位置编号 |
0 |
1 |
2 |
3 |
4 |
5 |
|
时间:t/s |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
|
速度:v/m·s-1 |
0.42 |
0.67 |
0.92 |
1.16 |
1.42 |
1.76 |
分析表中数据,在误差允许的范围内,小车做______________运动;由于此次实验的原始纸带没有保存,该同学想估算小车从位置0到位置5的位移,其估计算方法如下:x=(0.42×0.1+0.67×0.1+0.92×0.1+1.16×0.1+1.42×0.1)m,那么,该同学得到的位移_________ (选填“大于”、“等于”或“小于”)实际位移。
(2)乙同学的纸带如下图,按时间顺序取0、1、2、3、4、5、6七个计数点,每相邻的两计数点间都有四个点未画出。用刻度尺量出1、2、3、4、5、6点到0点的距离如图所示(单位:cm)。由纸带数据计算可得计数点3所代表时刻的瞬时速度大小v3=____________m/s,小车的加速度大小a=____________m/s2。(本小题结果保留2位有效数字)
![]()
甲乙两位同学利用穿过打点计时器的纸带来记录小车的运动,计时器所用电源的频率为50Hz。
(1)实验后,甲同学选择了一条较为理想的纸带,测量数据后,通过计算得到了小车运动过程中各计时时刻的速度如表格所示。
| 位置编号 | 0 | 1 | 2 | 3 | 4 | 5 |
| 时间:t/s | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| 速度:v/m·s-1 | 0.42 | 0.67 | 0.92 | 1.16 | 1.42 | 1.76 |
| 位置编号 | 0 | 1 | 2 | 3 | 4 | 5 |
| 时间:t/s | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| 速度:v/m·s-1 | 0.42 | 0.67 | 0.92 | 1.16 | 1.42 | 1.76 |
(08江苏卷)(1)该同学经实验测量及相关计算得到如下数据:
| 电阻 R (Ω) | 121.O | 50.O | 23.9 | IO.O | 3.1 |
| 导线直径 d (mm) | O.80l | 0.999 | 1.20l | 1.494 | 1.998 |
| 导线截面积 S (mm2) | O.504 | 0.784 | 1.133 | 1.753 | 3.135 |
请你根据以上数据判断,该种导线的电阻R与截面积S是否满足反比关系?若满足反 比关系,请说明理由;若不满足,请写出R与S应满足的关系.
(2)直接用两组R、S值相乘(50×0.784=39.2,10.0×1.753=17.53),可得RS明显不相等,可迅速判断结果“不满足”;并同时可简单计算50.0×0.9994≈50×1,10×1.4944≈10×1.54=50,两者接近相等,即R与d的四次方成反比,可迅速得出R与S2成反比。计算时选择合适的数据可使自己计算简单方便,如本题中的(50.0,0.999,0.784)和(10.0,1.494,1.753)。
(3)若导线的电阻率ρ=5.1×10-7Ω·m,则表中阻值为3.1Ω的导线长度l= m(结果保留两位有效数字)
在“匀变速直线运动的规律探究”的实验中,用打点计时器记录纸带运动的时间。计时器所用电源的频率为50Hz,图为实验得到的纸带(已经舍去前面比较密集的点),纸带上每相邻的两计数点间都有四个点未画出,按时间顺序取0、1、2、3.....多个计数点,用刻度尺量出相邻两计数点间的距离如图所示(单位为:mm),由于不小心,几条纸带被撕断了,混在一起,如下图所示,请根据给出的A、B、C、D四段纸带回答:![]()
(1)从B、C、D三段纸带中选出从纸带A上撕下的那段应该是 ;
(2)打A纸带时,物体的加速度大小为a = m/s2;(计算结果保留两位有效数字)
(3)物体通过1计数点的速度V1= m/s。(计算结果保留两位有效数字)
1. B 2. D 3. AD 4. AC 5. B 6.D 7. ABC 8. AC 9. ABC 10. AC
11.8.0 ;4.1; 12.①遇到挡板之后铁片的水平位移s和坚直下落高度h
②
③
13.解:由题意可知,学生沿杆下滑过程中受到的滑动摩擦力大小与传感器读数相等;
且该学生体重
(质量
)
……(2分)
⑴在0~1s内,该学生沿杆匀加速下滑:摩擦力:
……(1分)
加速度:
(m/s2)
……(1分)
最大速率:
(m/s)
……(1分)
⑵在1~5s内,该学生沿杆匀减速下滑:
加速度
(m/s2)
……(1分)
摩擦力
(N) ……(1分)
即:
……(1分)
⑶滑杆长度
(m)
……(2分)
14.解:(l)警车在追赶货车的过程中,当两车速度相等时.它们的距离最大,设警车发动后经过t1时间两车的速度相等.则.
……(1分)
……(1分)
s警
……(1分)
所以两车间的最大距离△s=s货-s警=
(2) v1=
……(1分)
此时货车位移:
警车位移:
因为S1>S2,故此时警车尚未赶上货车,且此时两车距离△S1=S1-S2=
警车达到最大速度Vm后做匀速运动,设再经过t3时间迫赶上货车.则:
Vmt3-v0t3=
S1 t3=2s
……(1分)
所以警车发动后耍经过t=t2+t3=12s才能追上货车。 ……(1分)
15.解:(1)设微粒穿过B板小孔时的速度为v,根据动能定理,有
⑴
……(1分)
解得
……(2分)
(2)微粒进入半圆形金属板后,电场力提供向心力,有
⑵ ……(1分)
联立⑴、⑵,得
……(2分)
(3)微粒从释放开始经t1射出B板的小孔,则
⑶
……(1分)
设微粒在半圆形金属板间运动经过t2第一次到达最低点P点,则
⑷
……(1分)
所以从释放微粒开始,经过
微粒第一次到达P点;
根据运动的对称性,易知再经过
微粒再一次经过P点;
……
所以经过时间
,
微粒经过P点。……(2分)
16.第一次碰撞后A以vO=
mA v0=(mA+mB)v1 1分
v1=
v1=
系统克服阻力做功损失动能
2分
因与N板的碰撞没有能量损失,A、B与N板碰后返回向左运动,
此时A的动能
因此,当B先与M板碰撞停住后,A还有足够能量克服阻力做功,并与M板发生第二次碰撞.
所以A可以与挡板M发生第二次碰撞。 2分
(2)设与M板第i次碰后A的速度为vi,动能为EAi,
达到共同速度后A的速度为vi′动能为EAi′
mA vi =(mA+mB) vi′ 1分
=
1分
1分
1分
单程克服阻力做功
1分
因此每次都可以返回到M板,最终停靠在M板前。 1分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com