查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分,

1―5BADAD 6―10CBCAA

 

二、填空题:本大题共6小题,每小题5分,共24分。

17.       解:(1)

所以

(2)当时,

所以,即

(3)所以

所以

所以

 

18.      解:(1)甲、乙两景点各有一个同学交换景点后,甲景点恰有2个A班同学有两种情况

①     互换的是A班同学,此时甲景点恰有2个A班的同学的事件记为.

②     ②互换的是B班同学,此时甲景点恰有2个A班的同学的事件记为..

所以甲景点恰有2个A班的同学的概率.

(2) 甲景点内A班的同学数为

所以

 

 

19.  解:(1)

时,取得最小值

(2)令

,得(舍去)

(0,1)

1

(1,2)

0

极大值

 

内有最大值

时恒成立等价于恒成立。

 

20.  (1)证明:以A为原点,AB,AD,AP所在直线为坐标轴建立直角坐标系(如图)

   

所以

(2)解:与底面成角,

过E作,垂足为F,则,

,于是

所成角的余弦值为

(3)设平面,则

A点到平面PCD的距离设为,则

即A点到平面PCD的距离设为

 

21.        解:(1)在等比数列中,前项和为,若成等差数列,则成等差数列。

(2)数列的首项为,公比为。由题意知:

时,有

显然:。此时逆命题为假。

时,有

,此时逆命题为真。

 

22.        解:(1)设椭圆方程为

解得所以椭圆方程

(2)因为直线平行于OM,且在轴上的截距为

,所以的方程为:

因为直线与椭圆交于两个不同点,

所以的取值范围是

(3)设直线的斜率分别为,只要证明即可

,则

可得

故直线MA、MB与轴始终围成一个等腰三角形。

 

 

 

 


同步练习册答案