题目列表(包括答案和解析)
(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;
(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;
(3)在AB上是否存在两个不同的点D′,E′,使沿折线.PD′E′O修建公路的总造价小于(2)中得到的最小总造价?证明你的结论.
![]()
a)
第19题图
(文)如图b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.
(1)求AC1与BC所成角的余弦值;
(2)求二面角C1-BD-C的大小;
(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.
![]()
第19题图
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线
,在抛物线上任意画一个点
,度量点
的坐标
,如图.
![]()
(Ⅰ)拖动点
,发现当
时,
,试求抛物线
的方程;
(Ⅱ)设抛物线
的顶点为
,焦点为
,构造直线
交抛物线
于不同两点
、
,构造直线
、
分别交准线于
、
两点,构造直线
、
.经观察得:沿着抛物线
,无论怎样拖动点
,恒有![]()
.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线
的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点
”改变为其它“定点![]()
”,其余条件不变,发现“
与
不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“![]()
”成立?如果可以,请写出相应的正确命题;否则,说明理由.
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线
,在抛物线上任意画一个点
,度量点
的坐标
,如图.![]()
(Ⅰ)拖动点
,发现当
时,
,试求抛物线
的方程;
(Ⅱ)设抛物线
的顶点为
,焦点为
,构造直线
交抛物线
于不同两点
、
,构造直线
、
分别交准线于
、
两点,构造直线
、
.经观察得:沿着抛物线
,无论怎样拖动点
,恒有![]()
.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线
的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点
”改变为其它“定点![]()
”,其余条件不变,发现“
与
不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“![]()
”成立?如果可以,请写出相应的正确命题;否则,说明理由.
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线
,在抛物线上任意画一个点
,度量点
的坐标
,如图.
(Ⅰ)拖动点
,发现当
时,
,试求抛物线
的方程;
(Ⅱ)设抛物线
的顶点为
,焦点为
,构造直线
交抛物线
于不同两点
、
,构造直线
、
分别交准线于
、
两点,构造直线
、
.经观察得:沿着抛物线
,无论怎样拖动点
,恒有![]()
.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线
的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点
”改变为其它“定点![]()
”,其余条件不变,发现“
与
不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“![]()
”成立?如果可以,请写出相应的正确命题;否则,说明理由.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com