19.设a≥0.f (x)=x-1-ln2 x+2a ln x(x>0). 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)设函数.

(Ⅰ)求函数f (x)在点(0, f (0))处的切线方程;

(Ⅱ)求f (x)的极小值;

(Ⅲ)若对所有的,都有成立,求实数a的取值范围.

查看答案和解析>>

(本小题满分12分)

设函数f(x)=lnxg(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.

(Ⅰ) 求a、b的值; 

(Ⅱ) 设x>0,试比较f(x)与g(x)的大小.

查看答案和解析>>

(本小题满分12分)
设函数f(x)=lnxg(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.
(Ⅰ) 求a、b的值;  
(Ⅱ) 设x>0,试比较f(x)与g(x)的大小.

查看答案和解析>>

(本小题满分12分)

设函数f (x)=,其中a∈R.

(1)若a=1,f (x)的定义域为[0,3],求f (x)的最大值和最小值.

(2)若函数f (x)的定义域为区间(0,+∞),求a的取值范围使f (x)在定义域内是单调减函数.

 

查看答案和解析>>

(本小题满分12分)

设二次函数f(x)=ax2+bx(a≠0)满足条件:

①f(-1+x)=f(-1-x);②函数f(x)的图象与直线y=x只有一个公共点.

(Ⅰ)求f(x)的解析式;

(Ⅱ)若不等式>(2-tx在t∈[-2,2]时恒成立,求实数x的取值范围.

 

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

C

B

B

C

C

A

C

B

B

二、填空题

13.        14.       15.      16.___-1__

三、解答题

17.解:1)

          =

2)

,而

,

18.解:(I)由题意:的取值为1,3,又

      

ξ

1

3

P

 

      

 

∴Eξ=1×+3×=.                       

   (II)当S8=2时,即前八秒出现“○”5次和“×”3次,又已知

       若第一、三秒出现“○”,则其余六秒可任意出现“○”3次;

       若第一、二秒出现“○”,第三秒出现“×”,则后五秒可任出现“○”3次.

       故此时的概率为

19.答案:(Ⅰ)解:根据求导法则有

于是,列表如下:

2

0

极小值

故知内是减函数,在内是增函数,所以,在处取得极小值

(Ⅱ)证明:由知,的极小值

于是由上表知,对一切,恒有

从而当时,恒有,故内单调增加.

所以当时,,即

故当时,恒有

20.(1)数列{an}的前n项和

                                           

     

数列是正项等比数列,,      

公比,数列                  

(2)解法一:

                               

,又

故存在正整数M,使得对一切M的最小值为2

   (2)解法二:

,        

函数

对于

故存在正整数M,使得对一切恒成立,M的最小值为2

21.答案:1)   

          

       2)由(1)知,双曲线的方程可设为渐近线方程为

设:

而点p在双曲线上,

所以:

所以双曲线的方程为:

22.证明: ,

,从而有

综上知:

 

23.解:如图1):极坐标系中,圆心C,直线:

转化为直角坐标系:如图2),点

X

图1

由点到直线的距离:

,即

 

 

0

 

图2

24.证明:由已知平行四边形ABCD为平行四边形,

中,

,又BC=AD

,得证。