16.给出下列命题: 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①若a,b∈R+,a≠b则a3+b3>a2b+ab2
②若a,b∈R+,a<b,则
a+m
b+m
a
b

③若a,b,c∈R+,则
bc
a
+
ac
b
+
ab
c
≥a+b+c

④若3x+y=1,则
1
x
+
1
y
≥4+2
3

其中正确命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

给出下列命题:
(1)存在实数x,使sinx+cosx=
3
2

(2)若α,β是第一象限角,且α>β,则cosα<cosβ;
(3)函数y=sin(
2
3
x+
π
2
)
是偶函数;
(4)函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是周期为
π
2
的偶函数.
(5)函数y=cos(x+
π
3
)
的图象是关于点(
π
6
,0)
成中心对称的图形
其中正确命题的序号是
 
 (把正确命题的序号都填上)

查看答案和解析>>

给出下列命题:
①|
a
-
b
|≤|
a
|-|
b
|;②
a
b
共线,
b
c
平,则
a
c
为平行向量;③
a
b
c
为相互不平行向量,则(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,则△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,则
a
⊥(
b
-
c
)   
其中错误的有
 

查看答案和解析>>

给出下列命题:
①存在实数α使sinα•cosα=1成立;
②存在实数α使sinα+cosα=
3
2
成立;
③函数y=sin(
2
-2x)
是偶函数;
x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴的方程;
⑤在△ABC中,若A>B,则sinA>sinB.
其中正确命题的序号是
 
(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

2、给出下列命题:
(1)直线a与平面α不平行,则a与平面α内的所有直线都不平行;
(2)直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;
(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;
(4)若直线a和b共面,直线b和c共面,则a和c共面.其中错误命题的个数为
3

查看答案和解析>>

 

说明:

    一、本解答给出一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

    二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分。

    三、解答右端所注分数,表示考生正确做到这一步应得累加分。

    四、只给整数分数,选择题和填空题不给中间分数。

一、选择题:每小题5分,满分60分。

1―5 DBCAB    6―10 ABDAD    11―12CC

二、填空题:每题5分,共20分

13.    14.    15.2000    16.②③

三、解答题(满分70分)

17.本小题主要考查正弦定理、余弦定理,三角形面积公式等基础知识。

    解:(1)

                                    (5分)

   (2)将

   

18.本小题主要考查概率的基本知识与分类思想,独立重复试验概率问题,考查运用数学知

识分析问题解决问题的能力。

解:(1)设甲获胜为事件B,则甲获胜包括甲以4:2获胜和甲以4:3获胜两种情况:

                           (5分)

   (2)随机变量ξ可能的取值为4,5,6,7,

ξ的分布列为:

ξ

4

5

6

7

P

                       (12分)

19.本小题主要考查正四棱柱中线线位置关系、线面垂直判定、三垂线定理、二面角等基础知识,考查空间想象能力、逻辑思维能力、运算能力以及空间向量的应用。

    ∵AC⊥BD,∴A1C⊥BD,

若A1C⊥平面BED,则A1C⊥BE,

由三垂线定理可得B1C⊥BE,

∴△BCE∽△B1BC,

   (2)连A1G,连EG交A1C于H,则EG⊥BD,

∵A1C⊥平面BED,

∴∠A1GE是二面角A1―BD―E的平面角。                            (8分)

(12分)

   (1)以D为坐标原点,射线DA为x轴的正半轴,

射线DC为y轴的正半轴,建立如图所示直角坐

标系D―xyz。

      (6分)

   (2)设向量的一个法向量,

                         (12分)

20.本小题主要考查等差数列、等比数列定义,求通项、数列求和等基础知识,考查综合分析问题的能力和推理论证能力。

    解:(1)成等比数列,

                                            (1分)

   

    猜想:                    (4分)

    下面用数学归纳法加以证明:

   

    由上可知猜想成立

   (2)

   

21.解:(1)函数

求导得

   

0

(0,1)

1

0

+

0

极小

极大

    从而是函数的单调递减区间,(0,1)是的单调递增区间,并且当

   

   (2)设曲线,则切线的方程为

    

   (3)根据上述研究,对函数分析如下:

    

   

    交点的横坐标,交点的个数即为方程的实根的个数。

   

    因此当a=0时,原方程只有一个实数根;

   

22.解:(1)分别过A、B作准线l的垂线,A1、B1为垂足,则根据抛物线定义得

    |AA1|=|AF|,|BB1|=|BF|,

    ∽Rt△MAA1

   

   (2)

 

    把②两边平方得

    又代入上式得

    把③代入①得

   

                                         (6分)

   (3)设直线AB的倾斜角为,根据对称性只需研究是锐角情形,不妨设是锐角,

    则

   

    从而   

        (7分)

    根据(2)知而函数上是增函数,

   

    即             (9分)

   

    取得极小值;也就是最小值,