题目列表(包括答案和解析)
(本小题满分15分) 已知抛物线C的顶点在原点, 焦点为F(0,1).
(1) 求抛物线C的方程;
(2)在抛物线C上是否存在点P, 使得过点P
的直线交C于另一点Q,满足PF⊥QF, 且
PQ与C在点P处的切线垂直.若存在,求出
点P的坐标; 若不存在,请说明理由.
(本小题满分15分)已知椭圆C:
过点(1,
),F1、F2分别为其左、右焦点,且离心率e=
;
(1)求椭圆C的方程;
(2)设过定点
的直线
与椭圆C交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(本小题满分15分)已知点P(4,4),圆C:
与椭圆E:
有一个公共点A(3,1),F1.F2分别是椭圆的左.右焦点,直线PF1与圆C相切.
![]()
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求
的范围.
(本小题满分15分)已知椭圆C:
过点(1,
),F1、F2分别为其左、右焦点,且离心率e=
;
(1)求椭圆C的方程;
(2)设过定点
的直线
与椭圆C交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(本题满分15分)已知点(1,
)是函数
且
)的图象上一点,等比数列
的前n项和为
,数列![]()
的首项为c,且前n项和
满足
-
=
+
(n
2).
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)若数列{
前n项和为
,问
>
的最小正整数n是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com