A.若则 查看更多

 

题目列表(包括答案和解析)

A.若关于x的不等式|x+1|+|x-3|≥a恒成立,则实数a的取值范围是
a≤4
a≤4

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为C,PC=2
3
,若∠CAP=30°,则⊙O的直径AB=
4
4

C.已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则极点到这条直线的距离是
2
2
2
2

查看答案和解析>>

A.若不等式|x-1|+|x-m|<2m的解集为∅,则m的取值范围为
(-∞,
1
3
]
(-∞,
1
3
]

B.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60°到OD,则PD的长为
7
7

C.直线3x-4y-1=0被曲线
x=2cosθ
y=1+2sinθ
(θ为参数)所截得的弦长为
2
3
2
3

查看答案和解析>>

.若,则等于(     )

A.    B.     C.    D.

 

查看答案和解析>>

A.若关于x的不等式|x+1|+|x-3|≥a恒成立,则实数a的取值范围是   
B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为C,PC=2,若∠CAP=30°,则⊙O的直径AB=   
C.已知直线的极坐标方程为ρsin(θ+)=,则极点到这条直线的距离是   

查看答案和解析>>

A.若关于x的不等式|x+1|+|x-3|≥a恒成立,则实数a的取值范围是   
B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为C,PC=2,若∠CAP=30°,则⊙O的直径AB=   
C.已知直线的极坐标方程为ρsin(θ+)=,则极点到这条直线的距离是   

查看答案和解析>>

一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.B  2.A  3.B  4.B  5.C  6.D  7.D  8.C  9.B  10.A  11.D  12.A

二、填空题(本大题共4小题,每小题4分,共16分)

13.  14.  15.  16.

三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.

 17.解:(Ⅰ)

=…………………………………………………3分

函数的周期

由题意可知………………………………………6分

(Ⅱ)由(Ⅰ)可知

………………………………………8分

由余弦定理知

 又

…………………………………………………………………12分

18.证明:(Ⅰ)

…………………………………………………………………………4分

(Ⅱ)

平面平面…………………………………………8分

(Ⅲ)连接BE,易证明,由(2)知

平面………………………………………………………………………12分

19.解:(Ⅰ)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的.其中抽到相邻两个月的数据的情况有5种,所以

P(A)=………………………………………………………………………………4分

(Ⅱ)由数据求得  由公式求得

再由,得所以y关于x的线性回归方程为………8分

(Ⅲ)当时,

同样,当时,

所以,该小组所得线性回归方程是理想的………………………………………………12分

20.(Ⅰ)由题意得,解得………………………2分

所以

上单调递减,在上单调递增,在上单调递减……6分

(Ⅱ)因存在使得不等式成立

故只需要的最大值即可

①     若,则当时,单调递增

时,

时,不存在使得不等式成立…………………………9分

②     当时,随x的变化情况如下表:

x

+

0

-

时,

综上得,即a的取值范围是…………………………………………………12分

解法二:根据题意,只需要不等式上有解即可,即上有解,即不等式上有解即可……………………………9分

,只需要,而

,即a的取值范围是………………………………………………………12分

21.因  ①

  ②

由①-②得………………………………4分

,故数列是首项为1,公比的等比数列

………………………………………………………………………6分

(Ⅱ)假设满足题设条件的实数k,则………8分

由题意知,对任意正整数n恒有又数列单调递增

所以,当时数列中的最小项为,则必有,则实数k最大值为1…………12分

22.解:(Ⅰ)由椭圆的方程知

设F的坐标为             

是⊙M的直径,

椭圆的离心率…………………………………………6分

(Ⅱ)⊙M过点F,B,C三点,圆心M既在FC的垂直平分线上,也在BC的垂直平分线上,FC的垂直平分线方程为  ①

BC的中点为

BC的垂直平分线方程为  ②

由①②得

在直线上,

椭圆的方程为…………………………………………………………14分

 

 

 


同步练习册答案