(3).记 ,求数列的前项和.并求 查看更多

 

题目列表(包括答案和解析)

数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设a=
3
4
c=-
1
4
cn=
3+an
2-an
.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:Tn
5
3
(n∈N*).

查看答案和解析>>

数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设数学公式数学公式,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设数学公式数学公式数学公式.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:数学公式(n∈N*).

查看答案和解析>>

数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设a=
3
4
c=-
1
4
cn=
3+an
2-an
.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:Tn
5
3
(n∈N*).

查看答案和解析>>

数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:(n∈N*).

查看答案和解析>>

数列{an}的前n项和记为Sn,前kn项和记为

Skn(n,k∈N*),对给定的常数k,若是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”,

(1)已知Snan(n∈N*),求数列{an}的通项公式;

(2)在(1)的条件下,数列an=2cn,求证数列{cn}是一个“1类和科比数列”;

(3)、设等差数列{bn}是一个“k类和科比数列”,其中首项b1,公差D,探究b1

与D的数量关系,并写出相应的常数t=f(k);

查看答案和解析>>


同步练习册答案