圆中有关重要结论: (1)若P(,)是圆上的点,则过点P(,)的切线方程为. (2)若P(,)是圆上的点,则过点P(,)的切线方程为. (3)若P(,)是圆外一点,由P(,)向圆引两条切线, 切点分别为A.B.则直线AB的方程为. (4)若P(,)是圆外一点, 由P(,)向圆引两条切线, 切点分别为 A.B.则直线AB的方程为. 查看更多

 

题目列表(包括答案和解析)

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

(本题20分,第1小题满分4分,第2小题满分6分,第3小题6分,第4小题4分)

         我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。

   (1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1·d2的值,并判断直线L与椭圆M的位置关系。

   (2)设F1、F2是椭圆的两个焦点,点F1、F2到直线        mn不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1·d2的值。

   (3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。

   (4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。

查看答案和解析>>

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:的两个焦点,点F1、F2到直线L:x-y+=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

(2008•奉贤区二模)在圆中有结论“经过圆心的任意弦的两端点与圆上任意一点(除这两个端点外)的连线的斜率之积为定值-1”是正确的.通过类比,对于椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,我们有结论“
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P的连线的斜率之积为定值-
b2
a2
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P的连线的斜率之积为定值-
b2
a2
”成立.

查看答案和解析>>


同步练习册答案