抛物线上的动点可设为P或. 查看更多

 

题目列表(包括答案和解析)

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>

以下关于圆锥曲线的四个命题:
①设A,B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹是双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹是圆(点A除外);
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④到定点(1,0)的距离比到y轴的距离大1的动点P的轨迹是抛物线.
其中真命题的序号为
②③
②③
(写出三友真命题的序号).

查看答案和解析>>

以下关于圆锥曲线的四个命题:
①设A,B为两个定点,k为非零常数,,则动点P的轨迹是双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹是圆(点A除外);
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④到定点(1,0)的距离比到y轴的距离大1的动点P的轨迹是抛物线.
其中真命题的序号为    (写出三友真命题的序号).

查看答案和解析>>

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以定点A为焦点,定直线l为准线的椭圆(A不在l上)有无数多个;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④过原点O任做一直线,若与抛物线y2=3x,y2=7x分别交于A、B两点,则
OA
OB
为定值.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

以下四个关于圆锥曲线的命题中,其中真命题的序号有(  )
①设A、B为两个定点,k为正常数,|PA|+|PB|=k,则动点P的轨迹为椭圆;
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④平面上到定点P及定直线l的距离相等的点的轨迹是抛物线.

查看答案和解析>>


同步练习册答案