由≥1可化为 查看更多

 

题目列表(包括答案和解析)

为建设好长、株、潭“两型社会”改革实验区,加快二市经济一体化进程,某规划部门在三市的交界处拟建一个大型环保生态公园,并在公园入口处的东南方位建造一个供市民休闲健身的小型绿化广场,如图是步行小道设计方案示意图,其中,Ox,Oy分别表示自西向东,自南向北的两条主干道,设计方案是自主干道交汇点O处修一条步行小道,小道为抛物线y=x2的一段,在小道上依次以点P1(x1y1),P2(x2y2),…,P(xnyn)(n≥10,n∈N*)为圆心,修一系列圆型小道,且这些圆型小道与主干道Ox分别于相切于A1,A2,…,An,…,且任意相邻的两圆彼此外切,若x1=1(单位:百米),且xn+1<xn
(1)记⊙P1,⊙P2,…,⊙Pn,…的半径rn组成的数列为{rn},求通项公式rn
(2)若修建这些圆形小道工程预算总费用为50万元,根据以往施工经验可知,面积为S的圆形小道的实际施工费用为10
πS
万元,试问修建好前n(n≥10,n∈N*)个圆型小道,预算费用是否够用,请说明你的理由.

查看答案和解析>>

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为cosx的二次多项式.
对于cos3x,我们有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可见cos3x可以表示为cosx的三次多项式.
一般地,存在一个n次多项式Pn(t),使得cosnx=Pn(cosx),这些多项式Pn(t)称为切比雪夫(P.L.Tschebyscheff)多项式.
(1)请尝试求出P4(t),即用一个cosx的四次多项式来表示cos4x.
(2)化简cos(60°-θ)cos(60°+θ)cosθ,并利用此结果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=
-
16
x+2
-x+8    0≤x≤2
4-x                  2<x≤4
.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y(个浓度单位)与时间x(个时间单位)的关系为y=
-
24
x+3
-x+8,   0≤x≤
3
2
23
12
-
1
2
x   ,      
3
2
<x≤
23
6
.只有当河流中碱的浓度不低于1(个浓度单位)时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是两次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>


同步练习册答案