三角形的内心:三角形三条角平分线的交点.即三角形内切圆的圆心. 例1.如图.通过防治“非典 .人们增强了卫生意识.大街随地乱扔生活垃圾的人少了.人们自觉地将生活垃圾倒入垃圾桶中.如图24-49所示.A.B.C为市内的三个住宅小区.环保公司要建一垃圾回收站.为方便起见.要使得回收站建在三个小区都相等的某处.请问如果你是工程师.你将如何选址. 解题思路: 连结AB.BC.作线段AB.BC的中垂线.两条中垂线的交点即为垃圾回收站所在的位置. 例2.如图.点O是△ABC的内切圆的圆心.若∠BAC=80°. 则∠BOC=( ) A.130° B.100° C.50° D.65° 解题思路:此题解题的关键是弄清三角形内切圆的圆心是三角形内角平分线的交点.答案A 例3.如图.Rt△ABC.∠C=90°.AC=3cm.BC=4cm.则它的外心与顶点C的距离为( ). A.5 cm B.2.5cm C.3cm D.4cm 解题思路:直角三角形外心的位置是斜边的中点.答案 B 练习1.如图.△ABC内接于⊙O.AB是直径.BC=4.AC=3.CD平 分∠ACB.则弦AD长为( ) A. B. C. D.3 查看更多

 

题目列表(包括答案和解析)

三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?
(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?
(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?
精英家教网

查看答案和解析>>

三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?
(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?
(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?

查看答案和解析>>

三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?
(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?
(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?

查看答案和解析>>

三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?
(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?
(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?

查看答案和解析>>

三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?
(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?
(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?

查看答案和解析>>


同步练习册答案