题目列表(包括答案和解析)
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B错;
+
=
=
≥4,故A错;由基本不等式得
≤
=
,即
+
≤
,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D错.故选C.
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
已知函数
和
的定义域分别是集合A、B,
(1)求集合A,B;
(2)求集合
,
.
【解析】本试题考查了集合的基本运算。第一问中,利用
由
解得
由
解得![]()
第二问中,由(1)得
![]()
解:(1)由
解得
……………………3分
由
解得
……………………6分
(2)由(1)得
……………………9分
![]()
已知
,
,
分别为
三个内角
,
,
的对边,
.
(Ⅰ)求
;
(Ⅱ)若
=2,
的面积为
,求
,
.
【命题意图】本题主要考查正余弦定理应用,是简单题.
【解析】(Ⅰ)由
及正弦定理得
![]()
由于
,所以
,
又
,故
.
(Ⅱ)
的面积
=
=
,故
=4,
而
故
=8,解得
=2
已知曲线
的参数方程是
(
是参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
:的极坐标方程是
=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,
).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为
上任意一点,求
的取值范围.
【命题意图】本题考查了参数方程与极坐标,是容易题型.
【解析】(Ⅰ)由已知可得
,
,
,
,
即A(1,
),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)设
,令
=
,
则
=
=
,
∵
,∴
的取值范围是[32,52]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com