已知直线l与两坐标轴围成的三角形的面积为3.分别求满足下列条件的直线l的方程: 斜率为. 解 (1)设直线l的方程是y=k(x+3)+4,它在x轴.y轴上的截距分别是--3.3k+4. 由已知.得(+3)=±6. 解得k1=-或k2=-. 直线l的方程为2x+3y-6=0或8x+3y+12=0. (2)设直线l在y轴上的截距为b,则直线l的方程是y=x+b,它在x轴上的截距是-6b, 由已知.得|-6b·b|=6.∴b=±1. ∴直线l的方程为x-6y+6=0或x-6y-6=0. 查看更多

 

题目列表(包括答案和解析)

已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:
(1)过定点A(-3,4);
(2)斜率为
16

查看答案和解析>>

已知直线l与两坐标轴围成的三角形的面积为3,求满足下列条件的直线l的方程:斜率为
16

查看答案和解析>>

已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:

(1)过定点A(-3,4);(2)斜率为.

查看答案和解析>>

已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:
(1)过定点A(-3,4);
(2)斜率为
1
6

查看答案和解析>>

已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:
(1)过定点A(-3,4);
(2)斜率为

查看答案和解析>>


同步练习册答案